
PL/SQL conditional compilation

An Oracle White Paper
October 2005

PL/SQL conditional compilation

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

NOTE

The following is intended to outline our general product direction. It is intended
for information purposes only, and may not be incorporated into any contract. It
is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release,
and timing of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
PL/SQL conditional compilation

CONTENTS

Abstract . 1

Introduction . 2

PL/SQL conditional compilation constructs . 5
The selection directive . 6
The inquiry directive . 9
The error directive . 12
Choosing between an inquiry directive and a static package constant 14
The DBMS_DB_Version package . 15

How does PL/SQL conditional compilation work? . 17
The PL/SQL compilation pipeline . 17
Using the DBMS_Preprocessor package to see

the conditional compilation output . 17
Choosing between the compile-time $if construct

and the run-time if construct . 20

PL/SQL conditional compilation use cases . 23
Latent self-tracing code . 23
Latent assertions . 24
Unit testing of subprograms declared only in a package body 27
Mock objects . 34
Comparing competing implementations during prototyping 37
Component based installation . 40
Spanning different releases of Oracle Database

with a single source code corpus . 46

Case study: implementing unit testing, assertions,
and tracing for a fast cube root
body-private helper function . 49
Introduction to the case study . 49
The design of the Fast_Cbrt() algorithm . 50
The requirements for the unit tests . 50
Discussion of the PL/SQL implementation . 51
The test results . 55
Conclusion to the Fast_Cbrt() case study . 55

How does PL/SQL conditional compilation compare with
similar features in other programming environments? 57

The availability of PL/SQL conditional compilation
in Oracle Database 10g Release 1 and
in Oracle9i Database Release 2 . 59
The Catch 22 . 59
PL/SQL conditional compilation

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
The decision to make PL/SQL conditional compilation
available in 10.1 and in 9.2 . 60

The PL/SQL conditional compilation underscore parameter 61
Functionality restrictions in 10.1 and 9.2 . 61
The purpose of the Ver_LE_ constants

in the DBMS_DB_Version package . 64

Concluding remarks . 66
Appendix A:

Change History . 67
20-September-2005 . 67
26-September-2005 . 67
14-October-2005 . 67
18-October-2005 . 67
10-November-2005 . 67

Appendix B:
Oracle Database Documentation Library references 68

Appendix C:
The source code of the DBMS_DB_Version package
in 10.2, 10.1, and 9.2 . 69

Appendix D:
Self-contained SQL*Plus script
from which Code_44 is an extract . 70

Appendix E:
Tracking information from the Bug Database . 71

Appendix F:
The Newton-Raphson formula for improving
an approximation for the cube root of a number . 72

Appendix G:
SQL*Plus scripts for the case study . 73
PL/SQL conditional compilation

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
PL/SQL conditional compilation

ABSTRACT

Oracle Database 10g Release 2 delivers a new PL/SQL language feature:
conditional compilation.

The feature is elegant, easy to understand, and has many interesting uses; some
of these may not have occurred to you. This paper illustrates conditional
compilation with code samples and demonstrates every conditional compilation
construct. It recommends best practices and discusses alternative
implementations.

Unusually, but for very compelling reasons, the feature has been made available
in patchsets of releases of Oracle Database earlier than the one that introduced
the feature. It is available, with some functionality restrictions, in the first release
of Oracle Database 10g from 10.1.0.4 onwards and in Oracle9i Database from
9.2.0.6 onwards. However, customers who do not use the new conditional
compilation constructs will see no change whatsoever in the way their PL/SQL
programs are compiled; this is true for all of the releases that support PL/SQL
conditional compilation.

The paper’s final section explains the restrictions in the feature’s functionality in
these earlier releases and the rationale for the decision to make the feature so
available. Oracle Independent Software Vendors, and in particular Oracle’s
Applications Division, are most likely to benefit from this retrospective
availability. But any customer who needs to deploy the same application in
different releases of Oracle Database might find this useful.

This paper does not attempt to be a reference manual for the feature. Rather, it
assumes an understanding of the functionality and the syntax. It does, however,
describe some aspects of the feature which — for reasons which will become
obvious — are not described in the Documentation Library.
PL/SQL conditional compilation page 1

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

com

im
INTRODUCTION

Oracle Database 10g Release 2 delivers a new PL/SQL language feature:
conditional compilation. The feature is elegant and easy to understand.

Conditional compilation delivers many benefits and is well known in
programming environments other than PL/SQL1. Broadly speaking, it allows
constructs — with formally defined syntax and semantics — to be used to mark
up text so that a so-called preprocessor2 can deterministically derive the text that
will be submitted to the compiler proper. The following two uses are, perhaps,
the most famous.

• Allowing self-tracing code to be turned on during development and to be
turned off when the code goes live. PL/SQL conditional compilation supports
this use in a direct and obvious way (see Latent self-tracing code on page 23).

• Allowing alternative code fragments, each appropriate for the peculiarities of a
particular operating system and inappropriate or illegal for other operating
systems, to coexist in the same source text so the correct fragment can be
selected for compilation according to the circumstances. PL/SQL is, by its
nature, operating system independent; but analogous challenges present
themselves when a PL/SQL compilation unit must be deployed in several
different releases of Oracle Database. Newer releases introduce new features
with new syntax and programs that take advantage of these are illegal in earlier
releases. PL/SQL conditional compilation supports this use in an elegant and
powerful way (see Spanning different releases of Oracle Database with a single source
code corpus on page 46).

There are many other uses; the following cases have been selected for discussion
in this paper. (The order is the most natural for explanation. Readers may decide
which they find the most valuable.)

• Allowing assertions3 to be turned on during development and to be turned off
when the code goes live. PL/SQL conditional compilation supports this use in
a direct and obvious way (see Latent assertions on page 24).

• PL/SQL conditional compilation allows new approaches to unit testing. For
example, tests for private helper subprograms may be coded in the body of the
package that contains them (see Unit testing of subprograms declared only in a package
body on page 27).

• Sometimes the unit test for a particular subprogram needs to demonstrate that
it handles exceptional conditions raised by the subprograms it calls. However,
it can be difficult to contrive these problems at will. PL/SQL conditional

1. See www.google.com/search?q=%22conditional+compilation%22

2. Readers who are familiar with other preprocessors might appreciate a pointer to the section
How does PL/SQL conditional compilation compare with similar features in other programming
environments? on page 57.

3. Roughly, an assertion is a test — which necessarily takes time — that program state at a
particular point in the code is as expected; typically, in PL/SQL, an exception is raised if the
test fails.

“We participated in the Beta Program for
Oracle Database 10g Release 2 and

extensively tested PL/SQL conditional
compilation. We found it functionally

plete and easy to use. It will allow us to
write a more manageable and faster

plementation for our component-based
architecture. We intend to use it in our

products at the earliest opportunity.”

— Håkan Arpfors
Senior Software Architect

IFS
www.ifsworld.com
PL/SQL conditional compilation page 2

http://www.google.com/search?q=%22conditional+compilation%22
www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
http://www.ifsworld.com

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
compilation supports this testing requirement in a simple way (see Mock objects
on page 34).

• A developer often realizes that more than one approach to the design of a
subprogram will result in its correct behavior; sometimes the alternative
approaches result in source code versions which are textually largely the same
but which differ critically in small areas distributed fairly evenly thought the
source. PL/SQL conditional compilation allows all the approaches to be
coded in a single source text — while they are being evaluated — and thereby
eliminates the risk of carelessly introduced unintended differences (see
Comparing competing implementations during prototyping on page 37).

• Oracle ISVs sometimes sell applications which provide optional extra
functionality for incremental cost. The modular delivery is implemented by
optional PL/SQL compilation units which are installed according to what the
customer has licensed. PL/SQL’s dependency model prevents the core part of
the application referring statically to optional components that are not
installed. However, the core part of the application should not need re-
installation in order to accommodate the installation of a new optional
component. This has forced the use of dynamic invocation — which has some
drawbacks. Conditional compilation allows a new approach. (see Component
based installation on page 40).

Before the discussion of the use cases, the section PL/SQL conditional compilation
constructs on page 5 illustrates the full set of primitives that expose the feature;
and the section How does PL/SQL conditional compilation work? on page 17 explains
the introduction of conditional compilation as a new stage in the compilation
pipeline and shows how the programmer can inspect its output.

It is always hard to find illustrative code samples that are, on the one hand, brief
and easy to present and are, on the other hand, sufficiently non-trivial that they
unequivocally show the benefit of a feature without making large demands on
the reader’s ability to extrapolate. The code included in the section PL/SQL
conditional compilation use cases on page 23 errs on the side of triviality. To
compensate, the section Case study: implementing unit testing, assertions, and tracing for a
fast cube root body-private helper function on page 49 is so realistic that the complete,
self-contained SQL*Plus scripts occupy about ten pages. Reading this section is
optional; but those who do study it will be rewarded by seeing the approaches
described in the individual use cases applied in concert to solve a real problem in
an effective and highly usable way.

The section How does PL/SQL conditional compilation compare with similar features in
other programming environments? on page 57 addresses questions that programmers
who are familiar with other implementations of conditional compilation might
naturally ask.

Unusually, but for very compelling reasons, PL/SQL conditional compilation
has been made available in patchsets of releases of Oracle Database earlier than
the one that introduced the feature. It is available in the first release of Oracle
Database 10g from 10.1.0.4 onwards and in Oracle9i Database from 9.2.0.6
onwards4. However, customers who do not use the new conditional compilation
constructs5 will see no change whatsoever in the way their PL/SQL programs
are compiled; this is true for all of the releases that support PL/SQL conditional
compilation.
PL/SQL conditional compilation page 3

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
The paper’s final section, The availability of PL/SQL conditional compilation in Oracle
Database 10g Release 1 and in Oracle9i Database Release 2 on page 59, explains the
restrictions in the feature’s functionality in these earlier releases and the rationale
for the decision to make the feature so available.

This paper does not attempt to be a reference manual for the feature. Rather, it
assumes an understanding of the functionality and the syntax. References to the
product documentation are given in Appendix B: Oracle Database Documentation
Library references on page 68. It does, however, describe some aspects of the
feature which — for reasons which will become obvious — are not described in
the Documentation Library.

Sadly, but realistically, this paper is likely to have minor spelling and grammar
errors. For that reason alone, it is bound to be revised periodically6. Other
interesting applications of PL/SQL conditional compilation cases might come to
our attention and — it is hoped — the paper will be revised to discuss them.
Therefore, before settling down to study the paper, readers should ensure that
they have the latest copy — for which the URL is given in the page’s header.

URLs sometimes change. But this one will always take you to the Oracle
Technical Network’s PL/SQL Technology Center:

www.oracle.com/technology/tech/pl_sql

Even in the unlikely event that the paper is moved, it will still be easy to find
from that page.

4. In 10.1.0.4, the feature is available by default but can be totally disabled by setting the PL/SQL
conditional compilation underscore parameter to “disable condtional compilation”.

In 9.2.0.6, the feature is totally disabled by default but can be made available by setting the
PL/SQL conditional compilation underscore parameter to “enable condtional compilation”.

In Oracle Database 10g Release 2 and later, the feature cannot be disabled and the PL/SQL
conditional compilation underscore parameter is obsolete.

5. Any of the new PL/SQL conditional compilation constructs, if used in a release of Oracle
Database that does not support the feature, will cause a compilation error. This guarantees that
no compilable extant code will be affected in any way when it is compiled in a release that does
support the feature.

6. This document’s change history is listed at the end. See Appendix A: Change History on page 67.
PL/SQL conditional compilation page 4

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
http://www.oracle.com/technology/tech/pl_sql

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
PL/SQL CONDITIONAL COMPILATION CONSTRUCTS

First, for readers who are new to this feature, Code_17 — so far without an
explanation8 — shows a simple example as a self-contained SQL*Plus script9,10.
Here, as in all the code examples in this paper, the PL/SQL conditional
compilation constructs are emphasized typographically.

Code_1 produces this output:

The way n is rendered in the two versions reflects the rules for the default
conversion of, respectively, a number and a binary_float variable to varchar2.

7. I don’t like to split code illustrations across page boundaries. That’s why you’ll sometimes see
unused white space at the bottom of a page.

8. The meaning of constructs $if, $then, $elsif, $else, and $end can easily be guessed. Readers who
are impatient to understand the object of the test, $$Use_IEEE, and how it is defined using
the new PL/SQL compilation parameter PLSQL_CCFlags, can look ahead to the section The
inquiry directive on page 9. And those who are impatient to understand the $error construct can
look ahead to the section The error directive on page 12.

9. The schema-level procedure Print() — a simple wrapper for DBMS_Output.Put_Line(), and
effectively a “synonym” for that packaged procedure — is used in the code samples to shorten
them.

10. When I write Some_Proc() I mean the procedure or function itself. (It might be declared at
schema level, at top level in a package, or nested to any deep level in a declare... begin... end block.)
When I write Some_Proc — without the trailing parentheses — I mean the schema level
compilation unit itself.

-- Code_1
alter session set PLSQL_CCFlags = 'Use_IEEE:2'
/
create or replace procedure P is
 -- Notice that $if ... $end interrupts a regular statement.
 n $if $$Use_IEEE = 0 $then number;
 $elsif $$Use_IEEE = 1 $then binary_float;
 $else $error 'Illegal Use_IEEE: '||$$Use_IEEE $end
 $end
begin
 $if $$Use_IEEE = 0 $then
 n := 1.0;
 $else
 n := 1.0f;
 $end
 Print(n);
end P;
/
SHOW ERRORS
alter procedure P compile
 PLSQL_CCFlags = 'Use_IEEE:0' reuse settings
/
begin P(); end;
/
alter procedure P compile
 PLSQL_CCFlags = 'Use_IEEE:1' reuse settings
/
begin P(); end;
/

...
5/11 PLS-00179: $ERROR: Illegal Use_IEEE: 2
1
1.0E+000
PL/SQL conditional compilation page 5

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
There are three kinds of PL/SQL conditional compilation construct: the selection
directive, the inquiry directive, and the error directive. Code_1 uses all of these. The
following sections discuss them in detail and suggest some best-practice
principles for their use.

The selection directive

The motivating requirement for conditional compilation is that it must select
between alternative fragments of source text at compilation time. PL/SQL
conditional compilation satisfies this requirement with the selection directive. Code_2
illustrates this.

Code_2 relies on the package CC_Control:

The selection directive must test a so-called static boolean expression. The rules that
such an expression must satisfy are defined in the PL/SQL User's Guide and
Reference book; the evaluation of a static expression must always give the same
result unless anything it depends on — a static package constant or the result of
an inquiry directive (see The inquiry directive on page 9) — has been deliberately
changed. A static boolean expression must be composed using so-called static
package constants, literals, or inquiry directives. Thus, for example, d in the
following is not a static package constant:

Therefore, the following is not a static boolean expression:

The selection directive uses these special building blocks:

The meaning of each is exactly symmetrical with that of the corresponding run-
time if building block. (Notice, though, that the selection directive ends with just $end
rather than with $end $if.)

The rules for evaluating the static boolean expression that the selection directive uses
are the same rules that PL/SQL uses at run-time. In particular, null has its usual
significance.

Moreover, when a selection directive refers to a static package constant, a
dependency is created from the current compilation unit to the package where

-- Code_2
$if CC_Control.Trace_Level > 0 $then
 Print(Sparse_Collection.Count());
 $if CC_Control.Trace_Level > 1 $then
 declare Idx Idx_t := Sparse_Collection.First();
 begin
 while Idx is not null loop
 Print(Idx||' '||Sparse_Collection(Idx));
 Idx := Sparse_Collection.Next(Idx);
 end loop;
 end;
 $end
$end

package CC_Control is
 Trace_Level constant pls_integer := 2;
end CC_Control;

package CC_Control is
 ...
 d constant pls_integer := To_Char(Sysdate, 'J');
end CC_Control;

CC_Control.d > 0 or CC_Control.Trace_Level

$if $then $elsif $else $end
PL/SQL conditional compilation page 6

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
the constant is declared. (Such a static package constant must be declared in a
compilation unit other than the one where it is used.) Thus, if a static package
constant is changed11, then all compilation units with selection directives that use the
constant will be invalidated and will therefore be recompiled to use the changed
value on their next use.

We12 recommend that a package that houses a constant that controls conditional
compilation should contain nothing but such declarations. (As a corollary, such a
package will not have a body.) This best practice principle minimizes
consequential invalidations when an element in the package specification is
changed.

All these rules — the symmetry with the run-time if construct, the way a static
boolean expression is evaluated, and the way dependencies are set up and
guarantee system-wide integrity — can be immediately understood by the
PL/SQL programmer. In fact, the static boolean expression is evaluated by the
identical code in the Oracle executable that would evaluate the same expression
at run-time. These properties contribute to making the PL/SQL conditional
compilation feature so elegant and easy to use.

The compile-time $if construct13 can always be substituted for the run-time if
construct — provided that it tests only a static boolean expression. Moreover, it
can be used in ways that the run-time if construct cannot.

• It can be used to select not only between alternative executable statements but
also between different declaration statements. Code_26 on page 31 illustrates
this.

• It can interrupt a regular PL/SQL statement. Code_1 on page 5 illustrates this.

Both these differences can be readily understood by realizing that the selection
directive selects fragments of regular PL/SQL text for compilation “proper”.

Code_3 shows another example of the selection directive to make the point that
source text that is not selected — and which the next stage of compilation
therefore never sees — need not be syntactically correct.

11. Of course, a static package constant can be changed only by editing the source of the package
that houses it and by recompiling it.

12. I use “we” in this paper to denote Oracle’s PL/SQL Team. In particular “we recommend”
indicates that the Team has discussed the issue and is making a consensus recommendation. I
use “I” when I’m referring to, for example, a design decision I took regarding one of the code
examples or the results I got when I ran it.

13. The term “compile-time $if construct” will often be used as an informal synonym for the
proper term, selection directive, in contexts which discuss the differences and similarities between
this and the run-time if construct.

-- Code_3
$if CC_Control.Some_Boolean $then
 Print('Ok. $if kicked in.');
$else
 -- The PL/SQL conditional compilation rules ensure
 -- that the apparently significant $end
 -- is not taken as such in this comment.
 Print(('bad');
$end
PL/SQL conditional compilation page 7

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Code_3 will compile without error when CC_Control.Some_Boolean is true;
otherwise it will fail to compile14. Notice that the presence of what the human
would read as the special building blocks $if inside the text literal for Print() and
$end within a comment causes no confusion for the PL/SQL compiler. This
reflects the fact that the processing of the conditional compilation directives is
done by the PL/SQL compiler itself. This is discussed more in The PL/SQL
compilation pipeline on page 17.

Finally in this section, it is interesting to notice that the trivial construct
$if false $then can be surprisingly useful for ad hoc “commenting out” during the
development cycle. Programmers often want to comment out a region of source
text before compiling and running a compilation unit. It is easy to do this by with
the C-style comment syntax by surrounding the region with an opening /* and a
closing */. Sometimes, though, the attempt is subverted because the region
already uses C-style comments — for example, to denote a SQL hint — and the
programmer is forced to comment out each line individually with the --
comment syntax. Code_4 shows an example.

A text-editor with a reasonable keystroke macro feature can help as Code_5
shows. But the process is still risky, particularly when the time comes to
uncomment the commented out region.

14. Here is the reported error, tied to its source line:

This is typical when the selected source has syntax errors.

Print(('Ok');
PLS-00103: Encountered the symbol ";" when expecting one of the following:
...
The symbol ")" was substituted for ";" to continue.

-- Code_4
procedure P is
begin
 ...
 for j in (select /*+ first_rows(10) */ Object_Name
 from All_Objects
 where rownum <= 10)
 loop
 -- Only the first 10 rows are needed because...
 -- The order doesn't mater because...
 Print(j.Object_Name);
 end loop;
 ...
end P;

-- Code_5
procedure P is
begin
 ...
-->> -- Note to self: re-activate when...
-->> for j in (select /*+ first_rows(10) */ Object_Name
-->> from All_Objects
-->> where rownum <= 10)
-->> loop
-->> -- Only the first 10 rows are needed because...
-->> -- The order doesn't mater because...
-->> Print(j.Object_Name);
-->> end loop;
 ...
end P;
PL/SQL conditional compilation page 8

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Code_6 shows how $if false $then solves the problem.

The inquiry directive

The use of static package constants to determine the outcome of a selection
directive is powerfully beneficial when selection directives in many different
compilation units all test the same static package constant — presumably to
make a choice that has the same meaning at all these sites. This is because
changing the constant will guarantee that every compilation unit that refers to it
will pick up the new value before it can next be used. If the purpose is to select
code on the basis of the release of the Oracle Database in which the unit is to be
compiled, then testing a static package constant is definitely the best approach.
This is discussed in detail in the section Spanning different releases of Oracle Database
with a single source code corpus on page 46.

However, if the purpose is to conditionalize the compilation of just a single unit
— for example, Some_Unit — then it might seem too heavy handed to use a
dedicated partner package — for example, Some_Unit_CC — just to control the
conditionalization. Programmers will prefer a lighter weight approach — one
which corresponds roughly to specifying the conditionalization “on the
command line”. The inquiry directive is provided for this purpose; it is used to
obtain a value from the compilation environment:

• from a PL/SQL compilation parameter.15

• from a user-defined so-called ccflag.16

• from one of the two predefined ccflags, PLSQL_Unit and PLSQL_Line.

User-defined ccflags are defined using the value for the new PL/SQL compilation
parameter, PLSQL_CCFlags. The All_PLSQL_Object_Settings view family
therefore has a new column PLSQL_CCFlags for this parameter17.

15. A PL/SQL compilation parameter is an initialization parameter that affects how PL/SQL
compilation is done. Before the advent of conditional compilation, the set was composed of
NLS_Length_Semantics, PLSQL_Optimize_Level, PLSQL_Code_Type, PLSQL_Debug, and
PLSQL_Warnings. The value of each such parameter is stored with each compilation unit as
part of its metadata and is revealed by the All_PLSQL_Object_Settings view family.

16. The PL/SQL User’s Guide and Reference book uses “flag” where I use ccflag. I invented the term
ccflag for this document to emphasize its specific significance for PL/SQL conditional
compilation.

-- Code_6
procedure P is
begin
 ...
 -- Note to self: re-activate when...
 $if false $then
 for j in (select /*+ first_rows(10) */ Object_Name
 from All_Objects
 where rownum <= 10)
 loop
 -- Only the first 10 rows are needed because...
 -- The order doesn't mater because...
 Print(j.Object_Name);
 end loop;
 $end
 ...
end P;
PL/SQL conditional compilation page 9

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
The SQL*Plus script shown in Code_7 illustrates the definition of the user-
defined ccflags Flag1 and Flag2 and their use — together with that of the
predefined ccflags and of the some PL/SQL compilation parameters — in several
inquiry directives.

The inquiry directive is formed by preceding the ccflag whose value it should
produce by $$. Notice that the inquiry directive can be used not only as the object
of the selection directive’s test; it can be used also where a regular PL/SQL variable
or literal might be used. In particular, it may be used where in regular PL/SQL
only a literal (and not a variable) may be used — for example, to specify the size
of a varchar2 or of a varray.

Procedure P() compiles without error and produces this output:

17. Notice that PLSQL_CCFlags can be used in two ways: first, it supports the specification of
name-value pairs for the user-defined ccflags; second (and, after all, why not?) it can be used per
se as the object of an inquiry directive. Code_7 shows both uses. The second use can be valuable
as (part of) the innards of an error directive.

-- Code_7
alter session set PLSQL_Warnings = 'enable:all'
/
alter session set PLSQL_Code_Type = native
/
alter session set PLSQL_CCFlags = 'Flag1:10, Flag2:true'
/
create procedure P is
 v varchar2($$Flag1);
begin
 Print('PLSQL_CCFlags: '||$$PLSQL_CCFlags);
 Print('PLSQL_Code_Type: '||$$PLSQL_Code_Type);
 Print('PLSQL_Unit: '||$$PLSQL_Unit);
 Print('PLSQL_Line: '||$$PLSQL_Line);
 Print('Flag1: '||$$Flag1);
 $if $$Flag2 $then
 Print('Flag2 is true');
 $end
 $if $$Flag3 is null $then
 Print('Flag3 is null');
 $elsif $$Flag3 $then
 Print('Flag3 is true');
 $else
 Print('Flag3 is false');
 $end
end P;
/
begin P(); end;
/
select
 Attribute||Chr(10)||s.Text||E.Text x
 from User_Source s inner join User_Errors e
 using (Name, Type, Line)
 where Name = 'P' and Type = 'PROCEDURE'
/

PLSQL_CCFlags: Flag1:10, Flag2:true
PLSQL_Code_Type: NATIVE
PLSQL_Unit: P
PLSQL_Line: 6
Flag1: 10
Flag2 is true
Flag3 is null
PL/SQL conditional compilation page 10

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Notice that Flag3, which was not defined, yielded the value null. Notice too that a
compilation warning is reported. The query against user_source inner join user_errors
shows this:

Moreover, if P() is wrapped, then the PLW-06003 warning is not raised.

This behavior was very carefully designed. It allows selection directives to be
embedded in code that is deployed for production in such a way that the correct
production behavior18 is guaranteed even when an accidental alter
<PLSQL unit> command is issued without the reuse settings clause. If this
happens, then it is very unlikely indeed that the current value of PLSQL_CCFlags
in the compilation environment will specify the same ccflags with the same values
as had previously been stored with the compilation unit. Rather, it is very likely
that it will not mention the ccflags that were used to conditionalize the unit. Recall
that a compile-time $if construct — in line with the run-time if construct —
where the test evaluates to null makes the same selection as if the test had
evaluated to false. The designer should, of course, choose an obscure name for
each ccflag that is to be used in this way to minimize the risk of an accidental
collision (or a hacked discovery). For example, a#b$0_dbg would be a reasonably
safe choice but debug would be risky.

Code_8 shows the recommended way to change the values of the ccflags for an
extant compilation unit.

The use of reuse settings ensures that the values of other PL/SQL compilation
parameters are not accidentally changed19.

Code_9 shows the recommended way to ensure that every user-defined ccflag for
an extant compilation unit evaluates to null.

This might seem strange. But whether or not the compilation unit uses $$x, the
effect will be the same20.

18. Of course, this works only when there is an appropriate default behavior. The obvious example
is when the selection directive guards tracing or assertion code that is to be turned off in
production.

19. I have noticed that some non-Oracle writers have used this idiom in articles about PL/SQL
conditional compilation:

This is obviously risky: it might recompile P with a changed value of PLSQL_Warnings or
PLSQL_Optimize_Level.

WARNING
 Print(Print('Flag3: '||Nvl ($$Flag3, 'null'));
PLW-06003: unknown inquiry directive '$$FLAG3'

-- Code_8
alter procedure P compile PLSQL_CCFlags =
 'Flag1:99, Flag2:false, Flag3:true' reuse settings
/

alter session set PLSQL_CCFlags = 'Flag1:99, Flag2:false, Flag3:true'
/
alter procedure P compile
/

-- Code_9
alter procedure P compile
 PLSQL_CCFlags ='x:null' reuse settings
/

PL/SQL conditional compilation page 11

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Finally, consider the apparent paradox shown in Code_10.

In fact, Code_10 compiles and runs without error to produce this output:

We saw no reason to disallow a user-defined ccflag whose name collides with itself
or with that of a PL/SQL compilation parameter or a predefined ccflag.21 Rather,
we have a simple rule for resolving the collision: the last-mentioned user-defined
ccflag “wins”.

The error directive

The error directive allows the programmer to cause a compilation error at will.
Suppose a programmer, writing new code, knows that the logic is incomplete at
some location in the source code; however, unless special steps are taken, the
code will compile and run. Of course its behavior will be incorrect. Suppose too
that the programmer — who inhabits the real world — is suddenly diverted
from working on this code and wants a forceful reminder about the coding that
remains to be done. The error directive allows a new approach22 as Code_11 shows.

The “argument” for the error directive must be a static varchar2 expression. It can
be composed using varchar2 literals, the concatenation operator, and static

20. At the time of writing, Bug #4537156 prevents the more obvious approach:
alter procedure P compile PLSQL_CCFlags ='' reuse settings

21. PL/SQL allows name collisions in other contexts and there are always rules for resolving them.
For example, an inner declare... begin... end block can declare a variable whose name collides with
one that is declared in a surrounding declare... begin... end block. For the inquiry directive, the rule
is based on a search order. This is documented in the PL/SQL User’s Guide and Reference book.

22. Inserting, for example, Raise_Application_Error(); with a suitable message text would have a
similar effect; but the reminder would be delayed until run-time — and might be substantially
delayed until a particular code-path brought the point of execution to the location in question.

-- Code_10
alter session set
 PLSQL_CCFlags = 'Some_Flag:1, Some_Flag:2, PLSQL_CCFlags:99'
/
begin
 Print($$Some_Flag);
 Print($$PLSQL_CCFlags);
end;
/

2
99

-- Code_11
procedure P is
begin
 ...
 $error '
 Note to self:
 Need to detect and handle "x is null"
 at line '||$$PLSQL_Line||' in unit '||$$PLSQL_Unit
 $end
 ...
end P;
PL/SQL conditional compilation page 12

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
varchar2 functions. Currently, the repertoire of static varchar2 expressions is very
limited. Here are some examples:

The To_Char() built-in with just one actual argument of datatype pls_integer is a
static function. (In the second example — with $$PLSQL_Optimize_Level — it is
invoked implicitly.) Surprisingly, the SQL*Plus script shown in Code_12 causes
PLS-00178: a static character expression must be used.

The explanation is very simple. The current rules are conservative. Operations
involving stringy datatypes are, in general, affected by environment parameters
like NLS_Sort — and the current implementation favors caution over flexibility.

The error directive is particularly useful for trapping “case not found” in a selection
directive as Code_13 shows.

With CC_Lov.Color = 0 as shown, compilation unit P fails to compile with
PLS-00179: $ERROR: Illegal value for CC_Lov.Color: 0. (The intended PLS-00179
will also be caused if CC_Lov.Color is null.)

'Code type is '||$$PLSQL_Code_Type

'Optimize level is '||$$PLSQL_Optimize_Level

-- Pkg.n is a static pls_integer constant
'Pkg.n is '||To_Char(Pkg.n)

-- Code_12
create package Pkg is
 v constant varchar2(1) := 'x';
end Pkg;
/
create procedure P is
begin
 $error Pkg.v $end
end P;
/
SHOW ERRORS

-- Code_13
package CC_Lov is
 Red constant pls_integer := 1;
 Blue constant pls_integer := 2;
 Green constant pls_integer := 3;
 Color constant pls_integer := 0;
end CC_Lov;

procedure P is
begin
 $if CC_Lov.Color = CC_Lov.Red $then
 Print('Handling red');

 $elsif CC_Lov.Color = CC_Lov.Blue $then
 Print('Handling blue');

 $elsif CC_Lov.Color = CC_Lov.Green $then
 Print('Handling green');

 $else
 $error
 'Illegal value for CC_Lov.Color: '||CC_Lov.Color
 $end
 $end
end P;
PL/SQL conditional compilation page 13

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Suppose that procedure P in Code_13 were rewritten to use an inquiry directive as
Code_14 shows.

And suppose that P were then carelessly recompiled thus:

The intended “Illegal value for Color” error message would not be caused; rather,
the less helpful compilation errors PLS-00174: a static boolean expression must be used
and PLS-00306: wrong number or types of arguments in call to '=' would occur. This
simply represents a limitation: there is no construct to test the datatype of the
value that an inquiry directive produces23.

Choosing between an inquiry directive and a static package constant

We recommend controlling conditional compilation with an inquiry directive when
the normal behavior of the compilation unit can be defined when it has the value
null — and when a not null value is never expected to be needed in the production
environment. Using a not null value to turn on (a specified level of) tracing24 is an
excellent example. (If correct behavior is defined by a not null value and especially
if the conditional compilation is wrapped, there’s always a risk that an accidental
alter... compile command that omits reuse settings will subvert the intended
behavior.) Therefore, using an inquiry directive is a perfect fit for isolating
diagnostic code that will be used deliberately in each successive revision of the
code in the development shop but which will be used only as a last resort in the
production environment. The following use cases illustrate this paradigm: Latent
self-tracing code on page 23; Latent assertions on page 24; Unit testing of subprograms
declared only in a package body on page 27; Mock objects on page 34; and Comparing
competing implementations during prototyping on page 37.25

23. A ccflag is — perhaps surprisingly — not of a datatype per se. However, the syntax check for the
value of the PLSQL_CCFlags parameter ensures the text that each ccflag specifies is either true,
false, null, or represents a legal pls_integer literal. Conditional compilation replaces each inquiry
directive with the literal that it denotes; then this turns out to be legal or not — in the subsequent
compilation stages — according to its context.

24. Conceivably, tracing may be turned on as an emergency diagnostic measure if a bug manifests
in the production environment. This would be done manually under the guidance of a support
engineer.

-- Code_14
procedure P is
begin
 $if $$Color = CC_Lov.Red $then
 Print('Handling red');

 $elsif $$Color = CC_Lov.Blue $then
 Print('Handling blue');

 $elsif $$Color = CC_Lov.Green $then
 Print('Handling green');

 $else
 $error
 'Illegal value for Color: '||$$Color
 $end
 $end
end P;

alter procedure P compile
 PLSQL_CCFlags = 'Color:true' reuse settings
PL/SQL conditional compilation page 14

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
We recommend controlling conditional compilation with a static package
constant in the opposite situation: when two or more different
conditionalizations are expected routinely to be used in the production
environment. The nature of the requirement that drives this will typically mean
that two or more compilation units are controlled by the same static package
constant; of course, a consistent response to conditionalization must be
guaranteed across all these units. The requirement will also typically imply that
the conditionalization should be triggered by an event — for example, licensing
and installing a new software component — and that the correct response
should be guaranteed without manual intervention. The following use cases
illustrate this paradigm: Component based installation on page 40 and Spanning
different releases of Oracle Database with a single source code corpus on page 46.

The DBMS_DB_Version package

The DBMS_DB_Version is supplied with Oracle Database. It exposes static
package constants that specify the current version and release26. The source is
listed in Appendix C: The source code of the DBMS_DB_Version package in 10.2, 10.1,
and 9.2 on page 6927. Programmers should test the DBMS_DB_Version constants
in selection directives that guard code that is legal only in a new release of Oracle
Database and that will therefore fail to compile in an earlier release.

This package is valuable precisely because it is supplied and because Oracle
Corporation, therefore, will ensure that its constants will differ appropriately
from release to release. It will therefore enable the automatic selection of the
appropriate release-specific code. The benefit is obviously felt when release-
conditionalized code is newly installed. A moment’s thought shows that the
benefit is felt also when release-conditionalized code is part of a deployed system
and when the populated Oracle Database is upgraded to a new release28.

Suppose that a compilation unit U containing a selection directive that tests a
DBMS_DB_Version constant is deployed in production in, for example, a
Release N environment. And suppose that an under-the-feet upgrade is made to
Release N+1. Then — because the compilation unit depends on the
DBMS_DB_Version package and because the upgrade will recompile this package
to reflect the new release — the compilation unit U will be invalidated.
Therefore, when U is next used, it will be recompiled and will therefore start
automagically29 to use the (presumably) newer and more efficient implementation

25. The same effect could be achieved by using a package specification that exposes a single static
constant and by shipping it wrapped. This approach, though, is decidedly less convenient —
and would be compromised if a future release of Oracle Database exposed information about
package variables in metadata.

26. DBMS_DB_Version has no package body and the package specification exposes only these
static package constants.

27. See also the section The availability of PL/SQL conditional compilation in Oracle Database 10g Release
1 and in Oracle9i Database Release 2 on page 59.

28. We understand from several ISVs and customers with mission critical applications developed
in house that such upgrading “under the feet” of a deployed system is common practice.

29. See en.wiktionary.org/wiki/automagic: ...done automatically in such a clever way that the result looks like
magic... It is drawn from the adage (often called Clarke's third law) that any sufficiently-advanced technology is
indistinguishable from magic.
PL/SQL conditional compilation page 15

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
http://en.wiktionary.org/wiki/automagic

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
that has been provided in a previously unselected leg of the selection directive
“compound statement”.

A code example is given later (see Spanning different releases of Oracle Database with a
single source code corpus on page 46).
PL/SQL conditional compilation page 16

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
HOW DOES PL/SQL CONDITIONAL COMPILATION WORK?

The section explains how conditional compilation fits into the PL/SQL
compilation pipeline and how the programmer can inspect the output of this
new stage. It also addresses what might seem to be a surprising question: is there
really much difference between the effect of compile-time $if construct and that
of the run-time if construct when the object of the test is a static boolean
expression? (The question arises because the optimizing PL/SQL compiler can
recognize when the outcome of the test for a run-time if construct is known at
compile time and can eliminate the code that will not be executed.)

The PL/SQL compilation pipeline

PL/SQL compilation proceeds in distinct stages. Each stage completes before
the next begins. Conditional compilation introduces a new early stage. This stage
intercepts the new PL/SQL conditional compilation constructs (the inquiry
directive, the selection directive, and the error directive). The new constructs rely on
these building blocks30,31:

The stage either replaces the PL/SQL conditional compilation constructs with
fragments of regular PL/SQL or drops them completely. The rest of the
compilation process then proceeds as if the PL/SQL conditional compilation
feature did not exist32.

Using the DBMS_Preprocessor package to see
the conditional compilation output

The DBMS_Preprocessor package satisfies this requirement from the functional
specification for PL/SQL conditional compilation:

The post-processed source should be available for inspection except for
wrapped sources. (This requirement asks that the text the compiler actually
processes after PL/SQL conditional compilation should also be visible. This is
a crucial aid to debugging.)

It has two modes of operation:

• It can retrieve the source text of an extant compilation unit — denoted by
schema, type, and name — and process it using the value of PLSQL_CCFlags that
was stored with the compilation unit (exposed by the
All_PLSQL_Object_Settings view family).

• It can take ephemeral source text — which exists only in a PL/SQL variable in
the program that calls the DBMS_Preprocessor subprogram — and process it

30. Notice that the new building blocks would be illegal in PL/SQL source before the advent of
PL/SQL conditional compilation. Source text containing any of these would cause the rather
uninformative compilation error PLS-00103: Encountered the symbol "$" when expecting one of the
following.

31. Here, <any_simple_identifier> stands for any identifier that would be legal in a regular PL/SQL
context (for example, as the name of a variable) without using double quotes.

32. The risk analysis that supported the decision to make this feature available in 10.1.0.4 and in
9.2.0.6 rests on this understanding.

$if $then $elsif $else $end $error $$<any_simple_identifier>
PL/SQL conditional compilation page 17

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
using the value of PLSQL_CCFlags from the current environment. (There are
overloads in this mode — corresponding to those for Dbms_Sql.Parse() — for
“small” and “large” amounts of source text.)

Each mode has two sub-modes:

• to return the post-processed source text into a PL/SQL variable.

• to output the post-processed source text via DBMS_Output subprograms.

For an input source text that compiled (or would compile) without error, then
the post-processed source text is derived simply by replacing all the structural
parts of each selection directive and the unselected source text therein with
whitespace and by replacing each inquiry directive that occurs in selected regular
PL/SQL text by the literal that the inquiry produced. The requirement for
compilation without error in this statement of the rule means that no
occurrences of the error directive will survive in the post-processed source.

Suppose that procedure P, created with Code_1 on page 5, is in place and is
owned by Usr. (Recall that the last action was to compile it with Use_IEEE:false.)
The SQL*Plus script shown in Code_15 reveals the current state.

Code_15 produces the following output:

and:

Notice that the actual source text that the programmer submitted using the create
or replace SQL statement — with its conditional compilation directives in place —
is stored in the catalog structures that are exposed by the All_Source view family.
Code_16 shows how to display the code that the conditional compilation stage
produced and passed on to the rest of the compilation process.

-- Code_15
select PLSQL_CCFlags from User_PLSQL_Object_Settings
 where Type = 'PROCEDURE' and Name = 'P'
/
select Text from User_Source
 where Type = 'PROCEDURE' and Name = 'P'
/

Use_IEEE:1

procedure P is
 n
 -- To do: implement a variant using binary_double
 $if $$Use_IEEE = 0 $then number;
 $elsif $$Use_IEEE = 1 $then binary_float;
 $else $error 'Illegal Use_IEEE: '||$$Use_IEEE $end
 $end
begin
 $if $$Use_IEEE = 0 $then
 n := 1.0;
 $else
 n := 1.0f;
 $end
 Print(n);
end P;

-- Code_16
begin
 DBMS_Preprocessor.Print_Post_Processed_Source(
 Schema_Name => 'USR',
 Object_Type => 'PROCEDURE',
 Object_Name => 'P');
end;
PL/SQL conditional compilation page 18

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Code_16 produces the following output:

Code_17 shows how to display the alternative version.

Code_17 produces the following output:

The abundance of whitespace may seem surprising. It is the result of the
straightforward specification of the behavior of conditional compilation (when
the output it produces compiles without error):

• it replaces each construct $if, $then, $elsif, $else, and $end with the number of
spaces that the construct occupies;

• it replaces the whole of the static boolean expression with a corresponding
number of spaces;

• it replaces unselected source text items with a corresponding number of spaces
— so even unselected comments are replaced with whitespace;

• it leaves selected source text items at (almost) their original locations;

• it replaces each inquiry directive that survives in selected source text with the text
it denotes33 and surrounds this text with one leading and one trailing

procedure P is
 n
 -- To do: implement a variant using binary_double

 binary_float;

begin

 n := 1.0f;

 Print(n);
end P;

-- Code_17
alter procedure P compile
 PLSQL_CCFlags = 'Use_IEEE:0' reuse settings
/
begin
 DBMS_Preprocessor.Print_Post_Processed_Source(
 Schema_Name => 'USR',
 Object_Type => 'PROCEDURE',
 Object_Name => 'P');
end;
/

procedure P is
 n
 -- To do: implement a variant using binary_double
 number;

begin

 n := 1.0;

 Print(n);
end P;
PL/SQL conditional compilation page 19

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
whitespace34. (This is the reason for the caveat “almost” in the preceding
bullet.)

The purpose of these rules is easily explained. PL/SQL compilation errors in the
surviving source text that the rest of the compilation process sees will be
reported — in the normal way — against line and column numbers in that text.
These must correspond as closely as possible to what the programmer wrote.
(As mentioned, this text is exposed exactly as the programmer wrote it by the
All_Source view family.)

For an input source text that compiled (or would compile) with errors, then the
post-processed source text is typically only partly produced and the text of the
compilation error messages is appended. Code_18 illustrates this.

Code_18 produces the following output:

Choosing between the compile-time $if construct
and the run-time if construct

Oracle Database 10g Release 1 introduced the optimizing PL/SQL compiler.
This radical change with respect to the previous releases of Oracle Database is
described in several technical whitepapers published on the Oracle Technical
Network.35

The compiler is able to recognize when the outcome of the test for a run-time if
construct is known at compile time and it tries to eliminate, at compile time, the
code that will not be executed. When this happens, the performance benefit of
the compile-time $if construct (smaller and faster run-time code) is delivered also

33. As mentioned earlier (see The error directive on page 12), a ccflag is not of a datatype per se.

34. This too may seem surprising. But suppose the ccflag x has been defined as 32676, which uses
five character positions. The inquiry directive $$x cannot be replaced without upsetting the length
of the source text line where it occurs. And if the surrounding spaces were not added,
subsequent PL/SQL compilation errors could occur in certain corner cases.

35. Start here: www.oracle.com/technology/tech/pl_sql/htdocs/new_in_10gr1.htm#faster

-- Code_18
alter procedure P compile
 PLSQL_CCFlags = 'Use_IEEE:2' reuse settings
/
begin
 DBMS_Preprocessor.Print_Post_Processed_Source(
 Schema_Name => 'USR',
 Object_Type => 'PROCEDURE',
 Object_Name => 'P');
end;
/

procedure P is
 n
 -- To do: implement a variant using binary_double

ORA-06550: line 6, column 11:
PLS-00179: $ERROR: Illegal Use_IEEE: 2
PL/SQL conditional compilation page 20

www.oracle.com/technology/tech/pl_sql/htdocs/new_in_10gr1.htm#faster
www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
by the run-time if construct. The SQL*Plus script shown in Code_19
demonstrates this.

The 1,000 Print() statements are used as a simple device to simulate voluminous
source code that implements tracing. The alternative approaches — using a
compile-time $if construct, as shown, or using a run-time if construct by
uncommenting it and by commenting out the compile-time $if construct — are
deliberately both in place so that toggling between the two will cause no change
in the observed value of Source_Size. The script is run four times to cover all
combinations of CC_Control.Debug (true and false) and of the kind of the if test
(compile-time and run time). I recorded the following results:

In this test, the optimizing compiler succeeded in eliminating the code that it
could prove would never be executed. (With warnings turned on as shown, the
SHOW ERRORS SQL*Plus command showed PLW-06002: Unreachable code.) If
the test is repeated using the run-time if construct with just Tracing boolean := false;
(without the constant keyword), then the bigger value of Source_Size is seen. Of
course, here the optimizer cannot prove that CC_Control.Tracing will never be true.
For the same reason, the attempt to compile P using the compile-time $if
construct fails when CC_Control.Tracing is not declared as a constant.

Notice, though, that the run-time if construct carries no guarantee to detect and
to eliminate unreachable code — notwithstanding the fact that the benefit is
usually delivered. (For example, if Code_19 is run in an environment where
PLSQL_Optimize_Level = 0, then the unreachable code is not eliminated and the
warning PLW-06002: Unreachable code is not given.) The compile-time $if

-- Code_19
alter session set PLSQL_Optimize_Level = 2
/
alter session set PLSQL_Warnings = 'enable:all'
/
create or replace package CC_Control is
 Tracing constant boolean := true;
end CC_Control;
/
create or replace procedure P is
begin
 Print('P');
 $if CC_Control.Tracing $then
--if CC_Control.Tracing then
 Print('The first of 1000 such lines');
 ...
 Print('The last line.');
 $end
--end if;
end P;
/
SHOW ERRORS
select Source_Size, Code_Size
 from User_Object_Size
 where Name = 'P' and Type = 'PROCEDURE'
/

Compile-time IF & Tracing=true
 68006 52575

Compile-time IF & Tracing=false
 68006 298

Run-time IF & Tracing=true
 68006 52575

Run-time IF & Tracing=false
 68006 298
PL/SQL conditional compilation page 21

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
construct is guaranteed — by the definition of its syntax and semantics — to
deliver its benefit. This difference is crucial.

The effort of analyzing an extant code corpus and replacing every run-time if
construct that tests a static boolean expression with the corresponding compile-
time $if construct is very unlikely to deliver a measurable performance
improvement. Nevertheless, if time does allow a deliberate review of extant code,
then this is one excellent check-list item: use the constant keyword in the
declaration of every variable that the code does not change. The worst that can
happen if constant is used inappropriately is a compilation error; and conversely, if
using constant does not cause a compilation error, its use can never be harmful —
and might be beneficial.

However, in new projects, we strongly recommend a conscious choice. If you
know that the condition you are testing can change only by deliberately editing
the source text — as is the case with static constants — then the compile-time $if
construct is overwhelmingly the best choice. PL/SQL now provides syntax to let
you express that knowledge explicitly. Be sure to make a conscious choice
between using a static package constant or using an inquiry directive in the selection
directive’s boolean expression (see Choosing between an inquiry directive and a static
package constant on page 14)36.

36. A run-time if construct that tests an expression composed only of inquiry directives and literals
should cause concern. If the expression properly expresses the intended test, then the compile-
time $if construct should be used instead.
PL/SQL conditional compilation page 22

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
PL/SQL CONDITIONAL COMPILATION USE CASES

This section presents a series of use cases. For each use case, first the problem is
stated and then the use of PL/SQL conditional compilation to solve the problem
is illustrated. For some of the use cases, conditional compilation allows a better
solution than was possible before its advent. For others it allows a solution where
previously none existed. The uses that are easiest to understand are discussed
first. The order of presentation is unrelated to the potential value.

Latent self-tracing code

The problem

Programmers often need to trace the execution of their PL/SQL compilation
units. They can choose between two radically different approaches to do this.

• They can adorn their code with a multitude of “print” statements (typically
using the DBMS_Output package or the Utl_File package) to say “I got here”
and to display selected values that characterize the current state of the world.

• They can leave their code untouched and use an interactive debugger37.

Of course, they can combine the approaches — as most programmers typically
do. A notable advantage of the “print” approach is that is can produce machine
readable output that can be archived and used in mechanical regression testing. I
draw on a further advantage in my case study (see Case study: implementing unit
testing, assertions, and tracing for a fast cube root body-private helper function on page 49): it
can show the evolution of a value of interest in a single report. The disadvantage
of the “print” approach has been that it causes a dilemma when the code is
deployed in production and when the tracing needs to be suppressed. It is
uncomfortable to delete all the tracing code because — sadly, but realistically —
it might be needed to diagnose bugs that manifest first in the production
environment; and it is uncomfortable to surround all the tracing code with run-
time if constructs. Performance considerations aside, this second approach might
require static reference to objects (for example, helper subprograms and schema-
level tables or directory objects for logging) that should not be present in the
production environment.

37. Oracle9i Database Release 2 introduced server-side support for interactive debugging of
PL/SQL subprograms using the industry-standard JDWP protocol. At the same time,
JDeveloper introduced a graphical interface to exploit this. You can set and remove
breakpoints, step into or step over subprograms, and display the values of all the variables in
scope when execution is paused at a breakpoint. This is especially labor saving when the
variable is not scalar (for example, a collection of collections of records); writing the “print”
code to show the same information would take some effort.
PL/SQL conditional compilation page 23

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Using PL/SQL conditional compilation to solve the problem

Code_20 shows the typical idiom for effectively removing tracing code from the
production environment while leaving it in place, latent but ready to be turned
back on when needed.

In this example, the extra declaration that is needed to support the tracing can be
made within the one region of selected text. However, sometimes programmers
find that a dedicated procedure is useful to format trace output in the same way
at many different tracing sites. Notice that conditional compilation allows the
definition of such a helper procedure to be compiled only when $$tracing is true.
Even if the optimizer manages to eliminate code that will never execute and then
— presumably in a second pass — to eliminate the definitions of subprograms
that are never called, the difference between the run-time if construct and the
compile-time $if construct is very significant: the latter allows the programmer
explicitly to say what is intended: that under specific circumstances, specific
subprograms should not become part of the run-time code. Real examples of
this are shown later (see Case study: implementing unit testing, assertions, and tracing for a
fast cube root body-private helper function on page 49).

Latent assertions

The problem

The notion of an assertion is well established in the general discussion of
programming practice; it is programming language agnostic. Wikipedia gives a
very clear account of the subject38. Here are some extracts from the article.

“...an assertion failure ...indicates a possible bug in the program.”

“...an assertion failure ...[usually] halts the program’s execution immediately.”

“Programmers add assertions to the source code as part of the development
process. They are intended to simplify debugging and to make potential errors
easier to find.”

“Assertions can also be a form of documentation: they can describe the state
the code expects to find before it runs (its preconditions), and the state the
code expects to result in when it is finished running (postconditions).
Assertions are also sometimes placed at points the execution is not supposed
to reach.”

“The advantage of using assertions rather than comments is that assertions are
checked for validity every time the program is run; if the assertion no longer
holds, the programmer will be notified. This prevents the code from getting
out of sync with the assertions (a problem that can occur with comments).”

38. See en.wikipedia.org/wiki/Assertion_(computing)

-- Code_20
$if $$tracing $then
 declare Idx Idx_t := Sparse_Collection.First();
 begin
 while Idx is not null loop
 Print(Sparse_Collection(Idx));
 Idx := Sparse_Collection.Next(Idx);
 end loop;
 end;
$end
PL/SQL conditional compilation page 24

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
http://en.wikipedia.org/wiki/Assertion_(computing)

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
“Assertions should be used to document logically impossible situations — if
the ‘impossible’ occurs, then something fundamental is clearly wrong. This is
distinct from error handling.”

“Assertions can be enabled or disabled, usually on a program-wide basis. If
assertions are disabled, assertion failures are ignored. Since assertions are
primarily a development tool, they are often disabled when the program is
released. Because some versions of the program will include assertions and
some will not, it is essential that the presence of assertions does not change the
meaning of the program. In other words, assertions ought to be free of side
effects.”

“The removal of assertions from production code is almost always done
automatically. It usually is done via conditional compilation.”

The point, of course, is that assertions incur a run-time cost. But to remove them
all after system testing is done and before the application goes live would
compromise the ability of the debugging team to diagnose bugs first seen in the
production environment. This is why the last bullet mentions conditional
compilation. PL/SQL programmers can now implement assertions so that they
deliver their intended benefit without incurring a cost in production. An old best
practice is now newly available in PL/SQL. Here is another extract from the
Wikipedia article:

“Some people, however, object to the removal of assertions by citing an
analogy that the execution of a program with assertions in development stage
and without [them in production] is like practicing swimming in a pool with a
lifeguard and then going swimming in the sea without a lifeguard.”

My view on this is that there are different kinds of assertions. Here is an
example:

• On the one hand, a subprogram Public_Utility() which is published and
documented for general use by programs that are not yet written when
Public_Utility() is released had better not suffer the removal for production of
the assertion that confirms that the actual arguments with which it is called
conform to its specification.

• On the other hand, a subprogram Body_Private_Helper() which cannot be called
except from sites in a single package body and which therefore can be policed
in a single unit of editing — the package body’s source file — may well lose the
corresponding assertion for production.

Using PL/SQL conditional compilation to solve the problem

Suppose that a helper function is needed in a package body to calculate the area
of a triangle given the length of each of its sides. The general approach39 can be
simplified because — supposedly — the triangles will always be right-angled40.
The function had better start with an assertion that the values of the formal

39. Pick one of the sides, s1; calculate the angle, theta, between s1 and the side, s2, at one of its ends;
determine the height, h, from the sin of theta and the length of s2; compute the area by halving
the product of h and the length of s1.

40. Find the two shortest sides; compute the area by halving their product.
PL/SQL conditional compilation page 25

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
parameters do indeed specify a right-angled triangle. The simplest version of the
guard for the assertion looks like this:

Code_2141 shows a simple approach to implementing the assertion.

Suppose that an ISV ships an application that includes many package bodies42.
And suppose that each package body has a number of assertions that are guarded
by a selection directive. It is likely that a single switch would be preferred to turn on
or turn off the assertions for all the compilation units that implement the
application. In that case, it would be useful for the selection directive that guards
each assertion to test the same static package constant — for example,
Assertion_CC.Asserting. The installation scripts would include two alternative
scripts to create the Assertion_CC package: one would set Asserting to false for
normal use; and the other would set it to true for exceptional use. It would be
sensible to obfuscate these two scripts and the compilation units they control.

Notice that the two approaches — using an inquiry directive or using a static
package constant — can be combined. Code_22 shows how the assertion shown
in Code_21 could be guarded.

The inquiry directive would be used to turn the assertions on or off for an
individual compilation unit; and the static package constant would be used to
turn them on or off for the whole application.

41. You may wonder why I do not simply use Heron’s formula.The reason is simple: I had forgotten
about it until a colleague reminded me. I beleive that — with some indulgence — my example
still works well.

42. The same considerations apply when an application that is developed in house is deployed for
production.

-- Code_21
function Area(
 s1 in Size_t, s2 in Size_t, s3 in Size_t)
 return Size_t
is
 epsilon constant Size_t := 0.000001;
 hyp constant Size_t := Greatest(s1, s2, s3);
 a constant Size_t := Least(s1, s2, s3);
 b constant Size_t := case
 when hyp=s1 and a=s2 then s3
 when hyp=s1 and a=s3 then s2
 when hyp=s2 and a=s1 then s3
 when hyp=s2 and a=s3 then s1
 when hyp=s3 and a=s1 then s2
 when hyp=s3 and a=s2 then s1
 end;
begin
 $if $$Asserting $then
 if not Abs(hyp*hyp - (a*a + b*b)) < epsilon then
 Raise_Application_Error(-20000,
 'hyp*hyp='||hyp*hyp||'; a*a + b*b = '||(a*a + b*b));
 end if;
 $end
 return 0.5*a*b;
end Area;

-- Code_22
$if $$Asserting or Assertion_CC.Asserting $then
 if not Abs(hyp*hyp - (a*a + b*b)) < epsilon then
 ...
$end
PL/SQL conditional compilation page 26

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
http://mathworld.wolfram.com/HeronsFormula.html

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Unit testing of subprograms declared only in a package body

The problem

Packages usually have subprograms that are defined only in the body. They are
deliberately not exposed in the package specification because they have no
meaning except as specific helpers for the implementation in the package body.
Many development shops require that every subprogram — and not just those
exposed by the package specification — be tested explicitly; they hold that the
implicit testing that body-private subprograms would receive — by limiting
formal unit testing to just the exposed subprograms that call them — is
insufficient.

How, then, can a unit test be written for such body-private subprograms?

The naïve approach is to declare every top-level body-subprogram in the
package specification and to implement the testing in subprograms that are
defined outside of the package. We know of customers who have done this —
and they report difficulty in policing the ordinary use of the would-be private
subprograms from other compilation units43. This has been particularly
troublesome when the subprogram seems to be generically usable but when its
design rests on the assumption of simplifying invariants that can be guaranteed
only when all invocations are from within the package itself.

The alternatives, before the advent of PL/SQL conditional compilation, all have
drawbacks.

(1) “Wrapper” package and tightly disciplined ownership rules. The “real” package is
created in a schema dedicated to hold just that package and the compilation
units that implement the unit tests. Every package body subprogram is
declared in the package specification. A wrapper package is written to
expose only those subprograms that the outside world should see and the
execute privilege is granted on just the wrapper to other users. The SQL*Plus

43. Apparently, “if you can describe it, then you can use it” trumps naming conventions, comments, or
external documentation.
PL/SQL conditional compilation page 27

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
script shown in Code_23 sketches the approach. In this example, Pkg_ is the
“real” package and Pkg is the wrapper.

The convention that this approach rests on would require some effort to
document and some discipline to enforce44.

44. Of course, there would be a performance penalty too from the extra subprogram invocation.
A feature planned for next major release of Oracle Database after 10.2, intra-unit and inter-
unit inlining, may remove this concern.

-- Code_23
create package Usr.Pkg_ is
 procedure P1(...);
 procedure P2(...);
 ...
 procedure Helper1(...);
 procedure Helper2(...);
 ...
end Pkg_;
/
create package body Usr.Pkg_ is
 ...
end Pkg_;
/
create package Usr.Pkg is
 -- Notice that this exposes no helpers.
 procedure P1(...);
 procedure P2(...);
 ...
end Pkg;
/
-- List the intended clients.
grant execute on Usr.Pkg to ...
/
create package body Usr.Pkg is
 procedure P1(...) is begin Pkg_.P1(...); end P1;
 procedure P2(...) is begin Pkg_.P2(...); end P2;
 ...
end Pkg;
/
create procedure Usr.Run_The_Tests(...) is
begin
 Pkg_.P1(...);
 Pkg_.P2(...);
 ...
 Pkg_.Helper1(...);
 Pkg_.Helper2(...);
 ...
end Run_The_Tests;
/
begin Usr.Run_The_Tests(...); end;
/

PL/SQL conditional compilation page 28

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

PL
wa
to s

F

(2) Implement the unit testing inside the package body itself and expose this by a single
Run_The_Tests() procedure. The SQL*Plus script shown in Code_24 sketches
the approach.

This approach has the disadvantage that, in the production environment,
packages would be rather bigger than their purpose required and that the
package specification would expose a mysterious testing procedure. There
might be other problems to solve if the tests require various schema objects
to be in place that would not be present in the production environment.

Using PL/SQL conditional compilation to solve the problem

PL/SQL conditional compilation can be used to support each of these two
approaches (selective exposure of body-only subprograms and encapsulation of
the tests inside the package body) and to overcome the disadvantages that each
— as so far described — has.

(1) Conditional exposure of the helper subprograms. The most obvious way to
implement this is to surround the direct declaration of each helper in the
package specification with a selection directive. This would require that the
package specification is wrapped and that the selection directive tests a ccflag
with an unguessable name — relying on the behavior that if such a ccflag is
not defined, then it evaluates to null. However, it is common to rely on the
package specification and the comments it contains to document a package
and so wrapping could be undesirable. Moreover, compiling and recompiling
the package specification to expose and to hide the helper subprograms,
even in the development shop, might hurt developer productivity because of

-- Code_24
create package Pkg is
 procedure P1(...);
 procedure P2(...);
 ...
 procedure Run_The_Tests(...);
end Pkg;
/
create package body Pkg is
 procedure P1(...) is ... end P1;
 procedure P2(...) is ... end P1;
 ...
 procedure Helper1(...) is ... end Helper1;
 procedure Helper2(...) is ... end Helper2;
 ...

 procedure Run_The_Tests(...) is
 begin
 P1(...);
 P2(...);
 ...
 Helper1(...);
 Helper2(...);
 ...
 end Run_The_Tests;
end Pkg;
/
begin Pkg.Run_The_Tests(...); end;
/

“I described the challenge we faced with
unit testing our package-body-private

subprograms to Bryn before I knew that
/SQL conditional compilation was on the
y. Testing is critical to us and I'm excited
ee the new possibilities that this feature

gives us — both for ordinary unit testing
and for the PL/SQL equivalent of mock

objects.”

— Nick Strange
Principal Architect

idelity Brokerage Company Technology
www.fidelity.com
PL/SQL conditional compilation page 29

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
http://www.fidelity.com/

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
the invalidations this would cause. Code_25 sketches an approach that avoids
these drawbacks.

Notice how Code_25 is derived from Code_23. It would still take some effort to
keep the list of formal parameters for each subprogram like Helper1_() in step
with that of the corresponding Helper1(). And it might be appropriate to use
obscure names for identifiers like Helper1_. (Presumably, a real example would
use Raise_Application_Error() with a useful error message.) Nevertheless, the
approach is substantially easier to maintain than the approach — without
conditional compilation — that inspired it.

-- Code_25
-- Don't wrap this
create package Pkg is
 procedure P1(...);
 procedure P2(...);
 ...
 procedure Helper1_(...);
 procedure Helper2_(...);
 ...
end;
/
-- Wrap this
create package body Pkg is
 procedure P1(...) is ... end P1;
 procedure P2(...) is ... end P2;
 ...
 procedure Helper1(...) is ... end Helper1;
 procedure Helper2(...) is ... end Helper2;
 ...

 procedure Helper1_(...) is
 begin
 $if $$Testing $then
 Helper1(...);
 $else
 raise Program_Error;
 $end
 end Helper1_;

 procedure Helper2_(...) is
 begin
 $if $$Testing $then
 Helper2(...);
 $else
 raise Program_Error;
 $end
 end Helper2_;
 ...
end Pkg;
/
create procedure Usr.Run_The_Tests(...) is
begin
 Pkg.P1(...);
 Pkg.P2(...);
 ...
 Pkg.Helper1_(...);
 Pkg.Helper2_(...);
 ...
end Run_The_Tests;
/
alter package Pkg compile body
 PLSQL_CCFlags = 'Testing:true' reuse settings
/
begin Usr.Run_The_Tests(...); end;
/

PL/SQL conditional compilation page 30

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
(2) Implement the unit testing inside the package body itself and expose this by a single
Run_The_Tests() procedure. The SQL*Plus script shown in Code_26 sketches
the approach.

Notice how Code_26 is derived from Code_24. Again, it might be appropriate
to use an obscure name for Run_The_Tests(). Notice that all of the code
responsible for the unit testing is removed for production; yet, by keeping it
in the same editing unit as the subprograms it tests, it provides an excellent
form of documentation for the programmer — and especially for someone
other than the author who later might need to maintain the code. This
technique is illustrated in a working example later (see Case study: implementing
unit testing, assertions, and tracing for a fast cube root body-private helper function on
page 49).

The choice between conditionally exposing the helper subprograms in order to
write the tests outside the package and writing the tests inside the package itself
will possibly depend on the scale of the project and on the number of developers
involved. And different development shops will probably have different
preferences. The second approach does have some practical advantages.

• When the tests are written inside the package body, they can manipulate
package globals that are declared only there. This would allow a simple, direct
way to set up the preconditions that the specification for a particular test might
require.

-- Code_26
-- Don't wrap this
create package Pkg is
 procedure P1(...);
 procedure P2(...);
 ...
 procedure Run_The_Tests(...);
end;
/
-- Wrap this
create package body Pkg is
 procedure P1(...) is ... end P1;
 procedure P2(...) is ... end P2;
 ...
 procedure Helper1(...) is ... end Helper1;
 procedure Helper2(...) is ... end Helper2;
 ...

 procedure Run_The_Tests(...) is
 begin
 $if $$Testing $then
 P1(...);
 P2(...);
 ...
 Helper1(...);
 Helper2(...);
 ...
 $else
 raise Program_Error;
 $end
 end Run_The_Tests;
end Pkg;
/
alter package Pkg compile body
 PLSQL_CCFlags = 'Testing:true' reuse settings
/
begin Pkg.Run_The_Tests(...); end;
/

PL/SQL conditional compilation page 31

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
• Inner subprograms, at an arbitrarily deep level of nesting, can be unit tested.
The technique may not be immediately obvious.

(3) Unit testing of deeply nested inner subprograms. The essential point is that an inner
subprogram is not visible in an outer scope; therefore, its unit test must be
written at a deeply nested site — guarded, of course, by a selection directive —
and a conditionally compiled mechanism must provide a path to invoke the
test from outside of the package. Code_27 shows how the plan starts45.

Of course, as it name suggests, Inner_2() is nested inside Inner_1() as Code_28
shows.

Notice that Inner_1() has two alternative bodies: the normal one that its
requirements specification determines and a trivial one that merely invokes
the test of its inner subprogram — or of all its inner subprograms, should
there be several.

45. I prefer to encapsulate the unit test as a subprogram. This both is self-documenting and
provides an obvious “granule” for conditionalization.

-- Code_27
procedure Inner_2(...) is
begin
 ...
end Inner_2;

$if $$Testing $then
 procedure Test_Inner_2(...) is
 begin
 ...Set up the conditions to call Inner_2
 Inner_2(...);
 ...Check that Inner_2 behaved according to spec
 end Test_Inner_2;
$end

-- Code_28
procedure Inner_1(...) is

 procedure Inner_2(...) is ... Inner_2;

 $if $$Testing $then
 procedure Test_Inner_2(...) is ... Test_Inner_2;
 $end

begin
 $if $$Testing $then
 Test_Inner_2(...);

 $else
 ...Normal operations of Inner_1()
 Inner_2(...);
 ...More normal operations of Inner_1()
 $end
end Inner_1;
PL/SQL conditional compilation page 32

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Of course — again, as its name suggests — Inner_1() is further nested in
Helper() as Code_29 shows.

Notice that the invocation of Inner_1() when Testing is true does not test
Inner_1(); rather, it follows the prepared invocation route to call
Test_Inner_2().

To keep this example tractable, Helper() is a top-level, body-private
subprogram. Code_30 shows the last step in the invocation route to the
outside world.

This might seem to be rather complex. But consider the alternatives: either,
(a), the ambition level to unit test inner subprograms is simply abandoned in
favor of the assertion that they receive adequate testing implicitly as a
consequence of the unit testing of the top-level subprograms that depend on
the inner helpers; or, (b), the source of the to-be-tested inner subprogram is
copied — temporarily — to establish it at top level in the package body; or,
(c), abandon the attempt to use inner subprograms and use only
subprograms that are declared at top level in a package.

The disadvantage of (a) is obvious; you may as well say that all subprograms
receive sufficient testing in normal use and that unit testing is unnecessary.

The disadvantage of (b) is that it is not in general viable without a great deal
of re-architecture: an inner subprogram often depends on items — both
variables and subprograms — that are visible within its own body but not at
the next outer scope. The quantity of temporary source code relocation that
is needed to make the test possible will be so great that the test it enables is
no longer a reliable test of what should be tested.

-- Code_29
procedure Helper(...) is

 procedure Inner_1(...) ... end Inner_1;

begin
 $if $$Testing $then
 Inner_1(...);

 $else
 ...Normal operations of Helper()
 Inner_1(...);
 ...More normal operations of Inner_1()
 $end
end Helper;

-- Code_30
package body Pkg is
 procedure Helper(...) is ... end Helper;

 procedure Main(...) ... Main;

 procedure Run_The_Tests(...) is
 begin
 $if $$Testing $then
 Helper(...);
 $else
 Raise_Application_Error(-20000, 'Testing diabled');
 $end
 end Run_The_Tests;
end Pkg;
PL/SQL conditional compilation page 33

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
The disadvantage of (c) will seem trivial to those who are not convinced by
“theoretical” software engineering best practices. They will need to invent
distinguishable — and therefore often uncomfortably long — identifiers.
Sometimes this will be necessary to avoid compilation error. Sometimes it
will result from “moral” pressure (you can hardly name a subprogram
Check_Inputs() when it is declared very far textually from its use, even when
this name would be unique). Sometimes, you will “reuse” a global variable —
safely, but confusingly for one who later must maintain the code — because
it has the right name and datatype. And sometimes, you will reuse a global
variable dangerously and descend into side-effect hell.

This has been a rather lengthy section. My aim has been to explain a number of
techniques and to discuss their properties. I recognize that there is no universally
applicable best approach. But I am convinced that knowing about these
techniques and understanding their properties will enable developers to design
better approaches to unit testing than were possible before the advent of
PL/SQL conditional compilation.

Mock objects

The problem

The term mock object is borrowed in this paper from object-oriented
programming in general — and from Java development in particular — as a
mnemonic for the use case described in this section. It denotes a paradigm for
unit testing. Again, Wikipedia has a useful account of the topic46. Here is a short
extract.

“In tests, a mock object behaves exactly like a real object with one crucial
difference: the programmer will hard-code return values for its methods...”

Consider the following subprogram dependency in a PL/SQL application.

• The function Pkg.Customer() takes the unique identifier of a customer and
returns a record representing the customer’s information. Assume that the
record has a complex structure; for example, one of its fields might be a
collection of object types that represent purchases that have been made and
are pending.

• The procedure Pkg.Process_Customer() iterates over a list of customer identifiers
and for each it invokes Pkg.Customer() and analyzes the return records to look
for specified patterns and to take appropriate action. For example, it might test
if the set of purchase records includes more than a specified number of novels
written by one of a group of authors; a customer for whom this test is positive
should receive an email announcing the availability of a new novel by one of
the authors in the group — provided that this novel has not already been
purchased.

• The function Pkg.Customer() can raise some documented exceptions. For
example, it might raise No_Data_Found or Too_Many_Rows. Presumably
Pkg.Process_Customer(), because it takes responsibility for generating a list of
valid customer identifiers, would handle No_Data_Found with an assertion.

46. See en.wikipedia.org/wiki/Mock_Object
PL/SQL conditional compilation page 34

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
http://en.wikipedia.org/wiki/Mock_Object

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Presumably, too, it would regard Too_Many_Rows as unexpected — but not
logically impossible. (This would be an indication of corrupt data stemming,
probably, from the accidental dropping a of a unique index.) It would probably
handle this by logging the occurrence of the problem and continuing with the
processing of the remaining customer records.

How is the unit testing for Pkg.Process_Customer() to be orchestrated? It must be
fed, in response to successive invocations of Pkg.Customer(), at least one record
whose characteristics trigger each of the specified Pkg.Process_Customer() actions
— not only the routine actions, but the special actions in response to exceptions.

It can be tricky and time-consuming to contrive the persistent data in the test
environment so that Pkg.Customer() will return the required representative set of
records.

Using PL/SQL conditional compilation to solve the problem

Conditional compilation lets developers meet the same unit testing goal cheaply
and without uncertainty by conditionally including code in the Pkg.Customer() that
replaces its normal implementation and returns a set of hard-coded customer
PL/SQL conditional compilation page 35

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
records with exactly the characteristics required by the unit test specification for
Pkg.Process_Customer(). Code_31 sketches the approach.

Some of my colleagues in Oracle’s PL/SQL Team think that the compile-time $if
construct has a significantly different feel than does its run-time cousin. I prefer

-- Code_31
package body Pkg is
 type Customer_t is record(...);

 $if $$Mocking_Customer $then
 Counter pls_integer := 0;
 $end

 function Customer(Id in integer) return Customer_t is

 $if $$Mocking_Customer $then
 function Mock_1(Id in integer) return Customer_t is
 This_Customer Customer_t;
 begin
 ... Mock up the first case
 return This_Customer;
 end Mock_1;

 function Mock_2(Id in integer) return Customer_t is
 This_Customer Customer_t;
 begin
 ... Mock up the second case
 return This_Customer;
 end Mock_2;
 ...
 $end

 begin
 $if $$Mocking_Customer $then
 Counter := Counter + 1;
 case Counter
 when 1 then return Mock_1(Id);
 when 2 then return Mock_2(Id);
 ...
 when n then raise No_Data_Found;
 else raise Too_Many_Rows;
 end case;
 $else
 declare This_Customer Customer_t;
 begin
 ... The "real" (non-mock) code to retrieve
 ... this customer from the persistent data.
 return This_Customer;
 end;
 $end
 end Customer;

 procedure Process_Customer is
 type Customer_Ids_t is table of integer
 index by pls_integer;
 Customer_Ids Customer_Ids_t;
 This_Customer Customer_t;
 function Valid_Customer_Ids return Customer_Ids_t is
 Ids Customer_Ids_t;
 begin
 ...
 return Ids;
 end Valid_Customer_Ids;
 begin
 Customer_Ids := Valid_Customer_Ids();
 for j in 1..Customer_Ids.Last() loop
 This_Customer := Customer(Customer_Ids(j));
 ... Process this customer
 end loop;
 end Process_Customer;
end Pkg;
PL/SQL conditional compilation page 36

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
to see the compile-time $if construct and the run-time if construct as not nearly
so different as they seem47 to be on first consideration.

Some would prefer to write $if $$Mocking_Customer $then only once in the
example and to have two completely separate regions of code — one for when
Mocking_Customer is true, for one for when it is not. At the very least, that
approach would require that the text function Customer(Id in integer) return
Customer_t is and the matching text end Customer be repeated. Possibly other code,
not shown in my example, would need to be repeated. I was taught that such
repetition is an evil to be avoided at all costs. Others argue against a proliferation
of tests of the same condition. You will have to resolve this aesthetic difference
for yourself — and different cases may lead to different resolutions.

Comparing competing implementations during prototyping

The problem

A developer will often realize that two design alternatives will result in the same
required behavior. For example, a collection might be implemented as an index-
by-plsql_integer table or as a nested table. Frequently, the best way to choose between
these alternatives is to code both and to compare them — for performance, for
source code size, and for aesthetic appeal.

Suppose that code in question is created using a single text file and that this file
will be the developer’s eventual deliverable. Without conditional compilation, the
developer will, during this prototyping phase, have two files; each will implement
one of the alternatives. Of course, the nature of this scenario means that these
competing files will be substantially textually identical but will differ in small
critical — but widely distributed — spots. Usually one file is derived from the
other by making a series of small edits. It often happens that, after having derived
the second file, the need arises to make changes in the code that is common to
both. This is especially the case when the competing alternatives need to coexist,
while the dedcision on the favorite is pending, but progress must nevertheless be
made on the implementation project. This duplication of work is not only time-
consuming; even worse, it is error prone.

Using PL/SQL conditional compilation to solve the problem

PL/SQL conditional compilation solves the problem by allowing the competing
implementations to coexist in the same text file. Typically the volume of
conditional code will be very much smaller than that of the file. This gives you,
effectively, an in-place, editable diff view.

I mentioned (see Introduction on page 2) that it is very hard to design an
illustration that is both realistic and short. This is especially true for this use case
because the defining characteristic of a real example is that it will have large
quantities unconditional code. The scenario I invented for my illustration here
will tax your imagination.

Suppose that you need to populate a scalar collection — say, of varchar2s — with
data that is produced programatically. Then later you need to derive a new

47. Some of my colleagues remind us that compilation can be seen as an optimization — and is
not an essential concept for understanding the meaning of a program. In that context, the
difference between the compile-time $if construct and the run-time if construct is that the
former can be used where the latter is syntactically illegal: to surround declarations and to
interrupt regular statements.
PL/SQL conditional compilation page 37

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
collection as a subset of the starting collection. Both the source collection and
the target collection should be of the same datatype so that various helper
subprograms can take each as an actual parameter. You realize that there are two
approaches to implement the subset derivation.

• You can iterate programatically over the collection elements and test each
using a run-time if construct. It the test succeeds, then you increment a counter
and copy from the current source element to the next target element. For this
approach, the preferred collection datatype is the index-by-plsql_integer table
because it excuses you from the chore of dealing with initialization and
extension.

• You can express the test in the where clause of a SQL select statement that uses
the source collection — using the table operator — in the from list and uses the
target collection as the destination for bulk collect into. For this approach, the
collection datatype must be the nested table because it must be declared at
schema level so that the select statement can understand it48. Code_32 assumes
that this type exists at schema level:

48. A proposed project for the next major release of Oracle Database after 10.2 would remove this
obstacle and would allow SQL within a PL/SQL program to select from a index-by-plsql_integer
table.

type Names_Nested_Table_t is table of varchar2(30)
PL/SQL conditional compilation page 38

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Code_32 shows how these two alternative approaches can coexist in the same
source text.

As presented, there are 28 lines of common code, 14 lines that are selected when
$$Alt evaluates to 1, and 8 lines that are selected when $$Alt evaluates to 2. You
must imagine that the elided code — doing something in Use_The_Data(),
computing <some condition>, and computing a new “x” — is voluminous. The real
program would also contain self-timing code and assertions — both, of course

-- Code_32
procedure P is

 $if $$Alt = 1 $then
 type Names_IBI_Tab_t is table of varchar2(30)
 index by pls_integer;
 Source_Rows Names_IBI_Tab_t;
 Target_Rows Names_IBI_Tab_t;
 subtype Rows_t is Names_IBI_Tab_t;
 $elsif $$Alt = 2 $then
 Source_Rows Names_Nested_Tab_t := Names_Nested_Tab_t();
 Target_Rows Names_Nested_Tab_t;
 subtype Rows_t is Names_Nested_Tab_t;
 $else
 $error 'Alt must be 1 or 2' $end
 $end

 procedure Use_The_Data(Rows in Rows_t) is
 n pls_integer := Rows.First();
 begin
 while n is not null loop
 n := Rows.Next(n);
 ...
 end loop;
 end Use_The_Data;
begin
 declare n pls_integer := 0; x varchar2(30);
 begin
 while <some condition> loop
 ... compute a new "x"
 n := n + 1;
 $if $$Alt = 2 $then
 Source_Rows.Extend();
 $end
 Source_Rows(n) := x;
 end loop;
 end;

 Use_The_Data(Source_Rows);

 -- Derive Target_Rows as a subset of Source_Rows.
 $if $$Alt = 1 $then
 declare n pls_integer := 0;
 begin
 for j in 1..Source_Rows.Last() loop
 if Source_Rows(j) like 'X%' then
 n := n + 1;
 Target_Rows(n) := Source_Rows(n);
 end if;
 end loop;
 end;

 $elsif $$Alt = 2 $then
 select Column_Value
 bulk collect into Target_Rows
 from Table(Source_Rows)
 where Column_Value like 'X%';
 $end

 Use_The_Data(Target_Rows);
 Print(Target_Rows.Count()||' from '||Source_Rows.Count());
end P;
PL/SQL conditional compilation page 39

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
guarded by selection directives — which would increase the common code volume
further.

This use case is unique among those discussed in this paper because it is very
unlikely that the loser of the two competing alternatives would survive into the
deliverable code; its lifetime may well be only a few days — but the effectiveness
of PL/SQL conditional compilation in increasing developer productivity is not
diminished by this. Of course, therefore, it is natural that the selection directive
should test an inquiry directive rather than a static package constant.

Notice the similarity between this case and the case discussed in the section
Spanning different releases of Oracle Database with a single source code corpus on page 46.
In both cases, large regions of code in the conditionalized compilation unit are
likely to be unconditional. And, quite possibly, the same identifier — used in
various constructs in the common code — will denote a variable whose datatype
is conditionally defined. However, the intent is dramatically different in the two
cases: here, the aim is to compare two approaches and reject one; there, the aim
is to provide alternative approaches — of indisputable difference in
attractiveness — for differently endowed environments. Therefore, here, the
inquiry directive is preferred; and, there, the static package constant is preferred.

Finally in this section, notice that the characteristics of the scenario described
here are very similar to those which are met in bug fixing. Very commonly, in bug
fixing, the fix is implemented as several small local changes scattered over a wide
area — possibly over several compilation units. It can be useful, during the
verification phase of the fix, to toggle quickly between the unfixed and the fixed
regimes to repeat old and newly invented tests — not least to ensure that the fix
does not cause performance degradation in those tests that run without error in
both regimes.

Component based installation

The problem

Oracle ISVs sometimes sell applications which provide optional extra
functionality for incremental cost. The modular delivery is implemented by
PL/SQL compilation units (and other schema objects and instance data) which
are installed, or not, according to what the customer has licensed. The core part
of the application must — somehow — be able to invoke these optional
components when they are installed and must be viable when they are not
installed. However, the core part of the application should not need re-
installation, in a modified form, in order to accommodate the installation of a
new optional component. (To do so would be to contradict the notion of
component based installation.)

Ordinary run-time conditional logic — by taking advantage of configuration data
that is maintained by the install scripts for the optional components — can
invoke operations supported by an optional component when it is installed and
avoid such invocations when it is not. However, PL/SQL’s compile-time
dependency model prevents the core part of the application from referring
statically to elements that are not installed — even if the code that would make
such references is never invoked at run time.

Here are three solutions which might be used before the advent of PL/SQL
conditional compilation; each has some uncomfortable drawbacks.
PL/SQL conditional compilation page 40

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
(1) Invoke the optional elements dynamically. This has two drawbacks. Firstly, the
approach puts some strain on the subsystem than handles the parsing and
sharing of cursors. And secondly, the formal parameters (including the
return value for a function) of a subprogram that is invoked dynamically
must be of SQL datatypes; for example, a boolean formal is not allowed49. In
addition, the syntax is more elaborate than that for the equivalent static
invocation — and so there is some cost in developer productivity. Code_33
shows such a dynamic invocation.

Here, and in the following examples in this section, the identifiers Red, Green,
Blue, Yellow, Cyan, and Magenta are used to denote optionally installable
compilation units. Had it not been necessary to invoke Red.X_Exists()
dynamically, then it could have been specified to return a boolean; the intent
of Code_33 could have been achieved — using one line instead of six — as
shown in Code_34.

The fact that the dynamic invocation approach sacrifices compile-time
checking and dependency creation (it is, of course, precisely this that allows
the approach to succeed) may be felt to be too large a price to pay. A further
consequence is that a development shop cannot build dependency
documentation automatically; this is critical for impact analysis when
considering certain kinds of changes during successive development cycles

(2) Supply the optional components as packages with no bodies. This approach removes
the need to use the dynamic invocation shown in Code_33 for elements in
optional packages. And, provided that the run-time logic ensures that an
optional component that is not installed is never invoked, then the missing
bodies will never cause an error. A customer might attempt directly to
invoke a subprogram in such a package without a body; the result would be
ORA-04067 — which certainly is readily understandable. However, these
bodiless “stub” packages would still have a footprint — most conspicuously
by the presence of unwanted schemas if the high level architecture has
dedicated a separate owner for each component. Further, the stubs would
show up in the All_Objects view family — and in all the views that reflect the
existence of PL/SQL compilation units — and would seem, in response to

49. It is possible that a future release of Oracle Database will remove this limitation and allow the
dynamic invocation of PL/SQL subprograms that have formal parameters with PL/SQL
datatypes.

-- Code_33
declare Answer char(1);
begin
 execute immediate
 'begin :r := Red.X_Exists(:a); end;'
 using out Answer, in a;
 if Answer = 'Y' then
 ...
 end if;
end;

-- Code_34
if Red.X_Exists(a) then
 ...
end if;
PL/SQL conditional compilation page 41

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
the SQL*Plus command Describe, to be normally viable. All this felt by some
ISVs to be an intolerable drawback; rather than installing only the licensed
components, the customer would install all components — some useful and
others deliberately broken yet highly visible.

(3) Use virtual invocation based on a hierarchy of object types. A full explanation of this
approach would be rather lengthy50. Briefly, an optional component that
would have been the package Red is described instead as a not final object type
Red_Super. And what would have been subprograms in the package are
described as not final member subprograms in the type. Then the component
itself is implemented as the type Red under Red_Super. When Red is installed,
its member subprograms override those of its supertype. The
implementation, in the body of Red, of the member methods would probably
be wrappers for subprograms that did the real implementation in the
package Red_Implementation51. This approach is very powerful when there
must be two or more distinguishable implementations of an interface52 in a
single database. However, when there must be never more than one
implementation in the same database, it adds little to approach (2). (It would,
however, solve the dedicated schema problem: the supertypes could be
installed in the core schema and the subtypes and partner packages for each
component could be installed in their own schemas.) Otherwise, this
approach, suffers from all the disadvantages of approach (2) — and suffers
further because of its added complexity.

Using PL/SQL conditional compilation to solve the problem

PL/SQL conditional compilation allows the references to optional components
to be guarded by selection directives. The following example shows a scheme where
such a selection directive tests a static package constant that reflects the presence or
absence of a particular component. A PL/SQL procedure — called as part of
the installation process for an optional component — recreates the package that
exposes these static package constants appropriately.

The core part of the application is modeled by the package Core in Code_35.

50. I intend to publish a whitepaper on OTN on this single topic.

51. You might fear a performance problem. In fact, especially in Oracle Database 10g Release 2
following some improvements in the “plumbing” for virtual invocation of subtype methods,
the overhead added by this approach is trivial.

52. The term interface is borrowed from Java and implies here only loosely that language’s
meaning.

-- Code_35
package Core is
 procedure Choose_Action(Choice in varchar2);
end Core;
PL/SQL conditional compilation page 42

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
The optional components are modeled by the packages Red, Green, Blue, Yellow,
Cyan, and Magenta, each of which exposes the single procedure Main(). Code_36
shows the body of Red.

The system also has a component Mandatory — with the same shape — which is
always installed. Code_37 shows the body of Core.

As mentioned, the design must include some metadata that specifies which
components have been installed. For this example, it is sufficient to let the
User_Objects view model this. Code_38 shows the procedure Maintain_Cpts_CC()
— which is required to recreate the package Cpts_CC to reflect the current state
of the component installation metadata. Maintain_Cpts_CC() depends on the
definition of the schema-level type Object_Names_t, thus:

-- Code_36
package body Red is
 procedure Main is
 begin
 Print('Red');
 end Main;
end Red;

-- Code_37
package body Core is
 procedure Choose_Action(Choice in varchar2) is
 begin
 case InitCap(Choice)
 -- Mandatory is always installed.
 when 'Mandatory' then Mandatory.Main();

 $if Cpts_CC.Red_Installed $then
 when 'Red' then Red.Main();
 $end

 $if Cpts_CC.Blue_Installed $then
 when 'Blue' then Blue.Main();
 $end
 ...
 $if Cpts_CC.Magenta_Installed $then
 when 'Magenta' then Magenta.Main();
 $end
 end case;
 exception when Case_Not_Found then
 Print('Component '||Choice||' is not installed.');
 end Choose_Action;
end Core;

type Object_Names_t is table of varchar2(30)
PL/SQL conditional compilation page 43

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
The package Cpts_CC, maintained by Maintain_Cpts_CC(), exposes the static
package constants controlling the conditionalization of package body Core.

The possibly daunting select statement first restricts the User_Objects to those
optional components that have been installed: this set is used to set the
corresponding static package constants to true. Then it restricts the list of
optional components to those that have not been installed: this set is used to set
the corresponding static package constants to false. When only Red is installed,
then the execute immediate Ddl statement creates the package Cpts_CC as shown in
Code_3953.

53. A real-world implementation would probably use DBMS_DDL.Create_Wrapped (new in Oracle
Database 10g), rather than execute immediate; then the All_Source view family would expose
obfuscated source text for the package Cpts_CC.

-- Code_38
procedure Maintain_Cpts_CC is
 Component_Names constant Object_Names_t := Object_Names_t(
 'RED', 'GREEN', 'BLUE', 'YELLOW', 'CYAN', 'MAGENTA');

 subtype Line_t is varchar2(80);
 type Lines_T is table of Line_t index by pls_integer;
 Newline constant char(1) := Chr(10);
 First_Line constant Line_t :=
 'create or replace package Cpts_CC is';
 Last_Line constant Line_t := 'end Cpts_CC;';
 Ddl varchar2(32767) := First_Line||Newline;
begin
 for j in (select Object_Name, 1 Installed
 from User_Objects
 where Object_Type = 'PACKAGE'
 and Status = 'VALID'
 and Object_Name in (
 select Column_Value from
 Table(Component_Names))
 union
 select c Object_Name, 0 Installed from (
 select Column_Value c
 from Table(Component_Names)
 where Column_Value not in (
 select Object_Name from User_Objects
 where Object_Type = 'PACKAGE'
 and Status = 'VALID')))
 loop
 Ddl := Ddl||' '||
 Rpad(Initcap(j.Object_Name||'_Installed'), 20)||
 'constant boolean := '||
 case j.Installed
 when 1 then 'true;'
 when 0 then 'false;'
 end||
 Newline;
 end loop;
 Ddl := Ddl||Last_Line||Newline;
 execute immediate Ddl;
end Maintain_Cpts_CC;

-- Code_39
package Cpts_CC is
 Blue_Installed constant boolean := false;
 Cyan_Installed constant boolean := false;
 Green_Installed constant boolean := false;
 Magenta_Installed constant boolean := false;
 Red_Installed constant boolean := true;
 Yellow_Installed constant boolean := false;
end Cpts_CC;
PL/SQL conditional compilation page 44

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Suppose that when only Red has been installed, the block shown in Code_40 is
run.

It will produce this output:

Suppose that then Blue and Magenta are installed and that — as the last step in the
install process the block shown in Code_41 is run.

The approach can be made more reliable by using a DDL trigger to invoke
Maintain_Cpts_CC(). A DDL trigger is not allowed to do DDL (except in a small
number of restricted ways that do not include create or replace on a PL/SQL
compilation unit). The DBMS_Scheduler package allows the restriction to be
overcome by running a job in a different session to call Maintain_Cpts_CC().
Code_42 shows a procedure that encapsulates the calls to the DBMS_Scheduler
subprograms.

-- Code_40
begin
 Core.Choose_Action('Mandatory');
 Core.Choose_Action('Red');
 Core.Choose_Action('Blue');
 Core.Choose_Action('Magenta');
end;

Mandatory
Red
Component Blue is not installed.
Component Magenta is not installed.

-- Code_41
begin Maintain_Cpts_CC(); end;

-- Code_42
procedure Submit_Run_Maintain_Cpts_CC is
 -- The DBMS_Scheduler subprograms commit
 -- DML to their metadata tables.
 -- But a trigger must not commit.
 pragma Autonomous_Transaction;
begin
 declare
 Job_Doesnt_Exist exception;
 pragma Exception_Init(Job_Doesnt_Exist, -27475);
 begin
 Sys.DBMS_Scheduler.Drop_Job(
 Job_Name => 'RUN_MAINTAIN_CPTS_CC',
 Force => true);
 exception when Job_Doesnt_Exist then null; end;
 Sys.DBMS_Scheduler.Create_Job(
 Job_Name => 'RUN_MAINTAIN_CPTS_CC',
 Job_Type => 'STORED_PROCEDURE',
 Job_Action => 'MAINTAIN_CPTS_CC',
 Number_Of_Arguments => 0,
 Enabled => false,
 Auto_Drop => true);
 Sys.DBMS_Scheduler.Run_Job(
 Job_Name => 'RUN_MAINTAIN_CPTS_CC',
 Use_Current_Session => false);
end Submit_Run_Maintain_Cpts_CC;
PL/SQL conditional compilation page 45

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

Ora
us
Code_43 shows the DDL trigger.

Notice that The_Event is not used in this illustration. However, a real world
implementation would probably use more elaborate logic to call
Submit_Run_Maintain_Cpts_CC() only whena known component is installed or
de-installed.

Following the create or replace DDL for Blue and Magenta — and with no further
intervention — the package Cpts_CC will now have the constants Blue_Installed
and Magenta_Installed set to true. Therefore, if the block shown in Code_40 is run
again, it will now produce this output:

In a real application with such optional components, there would probably be
several compilation units that would need to include selection directives like those
shown in Code_37 on page 43. Then the automagic response — causing all such
compilation units to be recompiled with an appropriate new conditionalization
following the installation of new components — would be particularly valuable.

Spanning different releases of Oracle Database
with a single source code corpus

The problem

Historians of Oracle Database might be interested to know that the introduction
of PL/SQL conditional compilation was motivated by a request from Oracle’s
Applications Division for a solution to the problem described in this section.
They face a programming challenge that is very commonly encountered by all
Oracle ISVs. They need to support the PL/SQL they deliver not only on the
latest release of Oracle Database but also on earlier releases. The argument goes
like this.

• Typically, each new release of Oracle Database introduces new functionality in
PL/SQL and in SQL along with new syntax for it. Code which takes advantage
of a new feature will fail to compile in earlier releases because of the new
syntax.

-- Code_43
trigger On_DML_Trg
 after create or drop or alter on schema
declare
 The_Event constant varchar2(30) := Ora_SysEvent();
 The_Owner constant varchar2(30) := Ora_Dict_Obj_Owner();
 The_Type constant varchar2(30) := Ora_Dict_Obj_Type();
 The_Name constant varchar2(30) := Ora_Dict_Obj_Name();
begin
 -- Submit_Run_Maintain_Cpts_CC() will recompile the
 -- Cpts_CC package. That recompilation need not
 -- and must not invoke Submit_Run_Maintain_Cpts_CC(),
 -- else endless recursion.
 if not (The_Owner = 'USR' and
 The_Type = 'PACKAGE' and
 The_Name = 'CPTS_CC')
 then
 Submit_Run_Maintain_Cpts_CC();
 end if;
end On_DML_Trg;

Mandatory
Red
Blue
Magenta

cle’s Applications Division provided the
e case that motivated the introduction of

PL/SQL conditional compilation. They
wanted their code to be able to span

different releases of Oracle Database,
using the latest features in the latest
release and using a fallback in earlier

releases.
PL/SQL conditional compilation page 46

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
• New features deliver a benefit — usually improving performance and
sometimes enabling more compact and reliable programming.

• Oracle’s Applications Division, like most ISVs, maintains only a single source
code corpus. ISVs typically do not branch derived versions for specific releases
of Oracle Database.

• Therefore, PL/SQL code — and the SQL it contains — is written to compile
in the earliest release of Oracle Database that the ISV supports.

• Therefore, new features — which have been energetically requested by the ISV
and which would improve performance and functionality for the ISV’s
customers — are not taken advantage of until several releases of Oracle
Database after their introduction.

• Therefore, customers who do use the latest release of Oracle Database are
penalized by the procrastination of those who do not.

Using PL/SQL conditional compilation to solve the problem

PL/SQL conditional compilation allows a single source code corpus to be viable
in several different releases of Oracle Database so that the code can use the latest
features in the latest release and can provide fallback implementations for earlier
releases. It manages this precisely because, as was pointed out in the discussion
of Code_3 on page 7, unselected source text need not be compilable.

Oracle Database 10g Release 1 introduced new functionality — exposed by the
new syntax indices of and values of as part of the forall statement — to allow the
collection that specifies the intended DML to be sparse. This functionality was
specifically requested by Oracle’s Applications Division and other users have
welcomed it54. It delivers a performance benefit to the user of the application
and a productivity benefit to its developer.

54. Oracle’s Ian.Neall wrote “We are now using sparse arrays a great deal... indices of is such a
powerful feature and I’m delighted to have this.”
PL/SQL conditional compilation page 47

http://people.us.oracle.com/pls/oracle/f?p=8000:2:::::PERSON_ID:10443668
www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Code_4455 shows how a PL/SQL conditional compilation selection directive is used
to select the ideal implementation when the release of the Oracle Database
supports it and a less attractive fallback when it does not.

If this fragment is compiled on Oracle9i Database Release 256, then at run-time
it will announce that the fallback has been selected and will execute the old style
loop to derive a dense collection for the bulk insert. If it is compiled on Oracle
Database 10g Release 1 or later, then it will announce its ideal quality and will use
the new indices of syntax to insert the sparse collection directly without needing
the explicit programming effort — and run-time cost — to compact the data.

Notice the crucial difference between the power of the compile-time $if
construct and the regular run-time if construct. When Code_44 is conditionally
compiled on Oracle9i Database Release 2, the rest of the compilation pipeline
sees only the code appropriate for that release; the other code — which would
not compile — vanishes. If this were not so, then this release of Oracle Database
would suffer compilation errors on the new code.

Recall the explanation given in the section The DBMS_DB_Version package on
page 15. If a compilation unit containing the construct shown in Code_44 were
deployed in production in a Oracle9i Database Release 2 environment and if an
upgrade were made to Oracle Database 10g (at either Release 1 or Release 2),
then the compilation unit would be invalidated. On its next use, it would be
recompiled and would therefore start automagically to use the newer and more
efficient implementation for the bulk insert.

55. The full context for Code_44 is listed in Appendix D: Self-contained SQL*Plus script from which
Code_44 is an extract on page 70.

56. Remember that PL/SQL conditional compilation has been made available in patchsets of
releases of Oracle Database earlier than the one that introduced the feature. See The availability
of PL/SQL conditional compilation in Oracle Database 10g Release 1 and in Oracle9i Database Release 2
on page 59.

-- Code_44
$if DBMS_DB_Version.Ver_LE_9_2 $then

 Print('Fallback. Selected in 9.2 and earlier.');
 declare k Index_t := 1; j Index_t := Sparse.First();
 begin
 while j is not null loop
 Dense(k) := Sparse(j);
 j := Sparse.Next(j);
 k := k + 1;
 end loop;
 end;

 forall j in Dense.First..Dense.Last()
 insert into Tbl values Dense(j);

$else

 Print('Ideal. Selected in 10.1 and later.');
 forall j in indices of Sparse
 insert into tbl values Sparse(j);

$end
PL/SQL conditional compilation page 48

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
CASE STUDY: IMPLEMENTING UNIT TESTING, ASSERTIONS,
AND TRACING FOR A FAST CUBE ROOT
BODY-PRIVATE HELPER FUNCTION

This section first presents the problem that is the basis of the study and then it
explains the design of the algorithm for the function that is required. Next, it sets
out the requirements for the unit tests. All this is to motivate the actual PL/SQL
implementation — and the next section shows how PL/SQL conditional
compilation is used to achieve this effectively. This section is followed by a
discussion of the test results. Because this is a relatively lengthy case study, it
warrants its own conclusion.

Introduction to the case study

Imagine that during the implementation of a particular package body the need
arises to find the cube root of a number57 resulting from a computation within
the package body. The designer can be sure what the range of values is; for this
example, assume that the number whose cube root is needed lies between 1.0
and 32767.0 and is never null58.

It is very easy to write a functionally correct version of the required helper, as
Code_45 shows.

Suppose, though, that — having used the Code_45 implementation — a
performance profiling exercise59 has shown that, in executing the package’s
exposed subprograms, a considerable amount of time is spent in the Slow_Cbrt()
function. Moreover, the private helper cube root function needs only to return
an approximate result; the requirement is that the computed cube root R_Fast of
the input value N must satisfy this inequality for all values of N within the
specified range:

Abs(R_Fast - R_Slow)/R_Slow <= 0.03

57. SQL does not provide a Cbrt builtin function; nor does any supplied PL/SQL package expose
this functionality.

58. This declaration succeeds:

But this declaration fails with PLS-00572: improper constraint form used:

Enhancement request 4676454 asks to remove this restriction.

59. We hope, for the next major release of Oracle Database after 10.2, to productize a hierarchical
performance profiling tool for PL/SQL and the SQL that it invokes. The tool — in prototype
form — has already been used to effect by development teams inside Oracle Corporation.
Here, the tool would show the time spent in the exposed procedure P() and the breakdown of
the time in P() to the self time and the time in its callees — in this example Slow_Cbrt(). Should
it be interesting, the user could drill down to a corresponding breakdown for the self time in
Slow_Cbrt() and the time in its callees — Ln() and Exp().

subtype My_Int is pls_integer range 1..32767;

subtype My_Real is binary_float range 1.0f..32767.0f;

-- Code_45
function Slow_Cbrt(n in Math_Real) return Math_Real is
 Three constant Math_Real := 3.0;
begin
 return Exp(Ln(n)/Three);
end Slow_Cbrt;
PL/SQL conditional compilation page 49

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
R_Slow is the result returned by Slow_Cbrt() and is presumably the exact cube
root to the limit of the precision of the datatype. This motivates the attempt to
implement a special Fast_Cbrt() helper function; it needs to deal only with inputs
in the range 1.0 to 32767.0 and it needs only three percent accuracy60.

The design of the Fast_Cbrt() algorithm

The design of the algorithm will probably be familiar to most readers:

• Choose an approximate starting value for the root.

• Improve the approximate value repeatedly using the Newton-Raphson method
until the next approximation is sufficiently close to the previous
approximation.

The mathematical basis for this approach is explained in Appendix F: The Newton-
Raphson formula for improving an approximation for the cube root of a number on page 72.

Real implementations for various mathematical functions which use this scheme
are common and all face the same design challenges: how to choose a good
starting approximation and how to make the iteration maximally efficient. The
implementation of Fast_Cbrt() tries two different approaches:

• The first is naïve: it gives no care to the choice of the starting approximation (it
merely divides the input by one hundred) and then it iterates slavishly until a
tolerance is satisfied. I will refer to this as Alt=1. (You can guess that this
corresponds to the value of the ccflag that selects this alternative.)

• The second is careful about the choice of the starting approximation (it divides
the input range logarithmically into intervals and uses a table that holds the
pre-calculated cube root for each interval) and then it applies the Newton-
Raphson improvement just once. I will refer to this as Alt=2.

The requirements for the unit tests

The testing must address two dimensions: correctness and — because it was this
that motivated the project — performance relative to Slow_Cbrt().

• The correctness test must select closely-spaced input values over the whole
specified range and must, for each, obtain the cube root using both Fast_Cbrt()
and Slow_Cbrt() and compute the fractional error — Abs(R_Fast -
R_Slow)/R_Slow. The correctness test must deliver the maximum value for this

error61. Of course, the correctness test should be run with all assertions

60. I should say right away the task for this case study is — these days — slightly artificial. Rather
than keep you in suspense, I will tell you now that when Slow_Cbrt() is implemented using the
number datatype, then the Fast_Cbrt() that this case study examines is, on average, a factor of twenty
faster than Slow_Cbrt(). However, when the datatype is changed to binary_float throughout —
as would be natural for a low accuracy cube root calculation — then Fast_Cbrt() is faster than
Slow_Cbrt() by a factor of “only” somewhere between 2.5x and 1.3x. (The result depends on
the platform.) Nevertheless, the task of implementing Fast_Cbrt() provides a very good
exemplar for the techniques that this paper presents. For that reason, I decided to keep to my
plan and to use it in this section.

61. A real world test would probably derive measures of central tendency — for example, the
mean and the standard error. I decided that this would have complicated my code with no
pedagogical gain.
PL/SQL conditional compilation page 50

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
enabled. It might be useful to enable tracing during this test to generate a
machine readable log for use in regression testing.

• The performance test must exercise Slow_Cbrt() with enough different input
values that the total time is measurable to reasonable precision and must then
exercise Fast_Cbrt() with the same set of input values. Because here it is
computation time — and not data access time — that is significant, the
DBMS_Utility.Get_CPU_Time() function62, with a precision of one
centisecond, is the natural choice for supporting the timing measurements.
The performance test should be run with assertions and tracing disabled.

Discussion of the PL/SQL implementation

This section begins with an overview that provides a guide to the code and
shows the Alt=1 and Alt=2 implementations as the compiler sees them when
they are conditionalized for production deployment. It then discusses how the
various conditional compilation constructs have been used.

Overview

The code is presented in Appendix G: SQL*Plus scripts for the case study on page 73
and is also available for download as explained in that appendix. At the highest
level, the approach is unremarkable.

• The first script (Setup.sql on page 74) creates a brand-new Oracle user to own
the schema objects that are needed for this case study. There are only four
schema objects and all are PL/SQL compilation units: the package
specification and body of Pkg — which models the package in which the need
for the cube root helper arises; the procedure Print that wraps
DMBS_Output.Put_Line(); and the procedure Test_It that invokes both Pkg.P()
— which models the package’s “ordinary” API — and Pkg.Run_The_Tests(). I
decided to implement the unit tests within the package body itself. This first
script also creates the specification of Pkg.

• The second script (Create_Package_Body.sql on page 75) is responsible for all the
pedagogy in this study; it creates the body of Pkg.

• The third script (Create_Test_Harness.sql on page 84) creates the procedure
Test_It.

• The fourth script (Exercise_Test_Harness.sql on page 85) repeatedly recompiles
the package body Pkg, with different values for the controlling ccflags, and after
each recompilation invokes Test_It().

The rest of the discussion can concentrate on the design of the package body
Pkg. The best starting point is the function Fast_Cbrt() itself (see page 82). As
mentioned, my implementation provides both approaches in the single script file
that creates the body of Pkg; the code where they differ is guarded by the inquiry
directive $$Alt. The body of Pkg also has assertions guarded by the inquiry directive
$$Asserting; and it has tracing code guarded by the inquiry directive $$Tracing.

62. The DBMS_Utility.Get_CPU_Time() function was introduced in Oracle Database 10g Release 1
as a partner to DBMS_Utility.Get_Time() which measures elapsed wall-clock time.
PL/SQL conditional compilation page 51

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Code_46 shows the code for Fast_Cbrt() that is compiled when Alt=1 and when
Asserting and Tracing are false. (I removed blank lines by hand.)

Two, Three, and One_Hundred are constants63 with the obvious meaning declared
at package level. The subtype Math_Real is also declared at package level. You
can guess that it is either number or binary_float according to the value of the ccflag
Use_Number.

Code_47 shows the code for Fast_Cbrt() that is compiled when Alt=2 and when
Asserting and Tracing are false.

Code_4764 also depends on constants with the obvious meanings and on the
subtype Math_Real. It depends further on the collection Thresholds — which
stores the boundaries of the intervals into which the input range is
logarithmically divided — and Starting_Cbrts — which stores the pre-calculated

63. You might think that this is a bit excessive. I prefer this style, not only because it reduces the
risk of typos, but also because such constants have an explicitly declared datatype and therefore
their use as actuals for overloaded subprograms is easier (for the human) to understand. Of
course, the compiler knows its rules and is never confused.

-- Code_46
function Fast_Cbrt(n in Math_Real) return Math_Real is
 Root Math_Real := null;
begin
 -- Starting Approximation.
 Root := n/One_Hundred;

 -- Newton-Raphson improvement.
 -- The classic convergence test.
 declare
 Tolerance constant Math_Real := 0.01;
 Last_Root Math_Real := n;
 begin
 while Abs(Root - Last_Root)/Root > Tolerance loop
 Last_Root := Root;
 Root := (Two*Root*Root*Root + n)/(Three*Root*Root);
 end loop;
 end;
 return Root;
end Fast_Cbrt;

-- Code_47
function Fast_Cbrt(n in Math_Real) return Math_Real is
 Root Math_Real := null;
begin
 -- Starting Approximation.
 declare
 Idx pls_integer := Number_Of_Thresholds;
 begin
 while Idx > 0 loop
 if n >= Thresholds(Idx) then
 Root := Starting_Cbrts(Idx);
 exit;
 end if;
 Idx := Idx - 1;
 end loop;
 end;

 -- Newton-Raphson improvement.
 -- It is now sufficient to iterate just ONCE because
 -- the starting approximation is so good.
 Root := (Two*Root*Root*Root + n)/(Three*Root*Root);
 return Root;
end Fast_Cbrt;
PL/SQL conditional compilation page 52

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
cube roots65. Both of these collections are declared as constants66 at package level
and are of datatype varray of Math_Real.

The use of PL/SQL conditional compilation

The code abounds with selection directives. In this case, every one tests an inquiry
directive because all the conditionalization choices are to be made to support
experimentation, debugging, quality assurance, and testing during the
development phase. The following aspects of the implementation are
conditionalized:

• I implemented the procedure Run_The_Tests() (see page 79) inside the body of
package Pkg following the second of the two approaches described in the
section Unit testing of subprograms declared only in a package body on page 27. The
performance test is implemented as the inner procedure Time_Slow_And_Fast()
(see page 80); the correctness test is implemented as the inner procedure
Find_Max_Fractional_Error() (see page 80).

Run_The_Tests() and various helpers it needed were declared conditionally
using the ccflag Testing. I preferred this to the first approach described in that
section — exposing Fast_Cbrt() conditionally for an external testing program
to exercise it — for these reasons.

- The performance test should be as direct as possible. Fast_Cbrt() in normal
use will be called only from other sites inside the same compilation unit. I
wanted to avoid needing to reason about the cost of an extra level of
invocation — using, for example, an Expose_Fast_Cbrt() function — and
about the possible extra cost of invoking a subprogram from a different
compilation unit67.

- The function Slow_Cbrt() (see page 78), which has no role except in
correctness and performance testing, is immediately accessible to the testing
subprogram without the added burden of exposing yet another element
conditionally.

64. The last two statements would more naturally be collapsed, thus:

However, the final value of Root needs to be available for tracing and for the assertion when
these are conditionally selected.

65. Starting_Cbrts(n) stores the cube root of the geometric mean of Thresholds(n) and Thresholds(n+1).

66. I went to some trouble to declare Starting_Cbrts and Thresholds as constants. As has been
mentioned, this is always a sound correctness idiom and can often help the optimizing
compiler. I have learned that the technique — forward declare a function to compute the
values, initialize the constant using the function, and then define the function — is not widely
known. The full details are shown in Appendix G: SQL*Plus scripts for the case study on page 73
and in the downloadable code.

67. This consideration might become less significant in next major release of Oracle Database after
10.2 when, as it is hoped, intra-unit and inter-unit inlining are supported. The former will be
easier to control. Nevertheless, writing the test programs outside of the package would — in
a performance test — incur a cost of thinking things through and writing them up in the test
report. The putative benefit of writing the tests in a separate file so that two developers could
work concurrently, each on his own file, would not, in my view, justify the cost.

return (Two*Root*Root*Root + n)/(Three*Root*Root);
PL/SQL conditional compilation page 53

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
- I wanted to produce trace output to show the Newton-Raphson
convergence. Yet, because, I would invoke Fast_Cbrt() about a million times
during the test sequence (650,000 times for the CPU time measurement and
the same number for the correctness test) I needed to be able to generate the
trace output only on every Nth call (I found that every 65,00th call was
convenient) and then only during the correctness test. This was easy to
achieve by incrementing and testing a counter declared — conditionally on
Tracing, of course — at package level.

• As mentioned, I wanted to trace the Newton-Raphson convergence. I also
wanted to print the Thresholds and Starting_Cbrts collections on which the Alt=2
approach critically depend. The ccflag Tracing controls these print statements
and also guards the code — implemented cooperatively in the procedures
Find_Max_Fractional_Error() (see page 80) inside Run_The_Tests() and
Fast_Cbrt() (see page 82) — that ensures that the Newton-Raphson
convergence is traced only on every Nth call. In fact, this frequency was
controlled by the ccflag Trace_Step. It was very much more convenient to control
all the testing parameters using a single alter... compile statement than it would
have been to invent some other way to vary the tracing frequency.

• The datatype of the subtype Math_Real — number or binary_float — is
determined by the ccflag Use_Number. This makes no other appearance in the
code except to provide the appropriate information — “Number version” or
“IEEE version” — in the trace output. I included this more as an indulgence —
to demonstrate the phenomenal performance difference between number and
binary_float — than as an example of an expected realistic choice68.

• Assertions are enabled or disabled by the ccflag Asserting. The procedure
Assert_Valid_Input() (see page 77) is invoked on entry to Fast_Cbrt() and to
Slow_Cbrt(). The procedure Assert_Cbrt_Cubed_Gives_Input() (see page 77) is
invoked immediately before each function return. The declarations of these
functions are at package level and are also guarded by Asserting. These
procedures, in turn, use similarly guarded package level helpers to format error
messages in the event of assertion failure.

Other uses for assertions arose naturally in connection with the Alt=2
approach:

- The function Calculated_Thresholds() (see page 81), which initializes the
constant Thresholds collection, should end up having computed — by
incrementing and testing whether a limit is exceeded — the intended
number of values. Failure to do so is a classic example of the “logical
impossibility” and would indicate a bug (for example, some forgotten
tolerance in a comparison of mathematical real numbers)69. A similar case

68. Just conceivably, the code in question might have to be viable in Oracle9i Database Release 2
where the binary_float datatype is not available. In that case, as will be made clear later (see The
availability of PL/SQL conditional compilation in Oracle Database 10g Release 1 and in Oracle9i Database
Release 2 on page 59), it would not be practical to use inquiry directives — and therefore every
selection directive would have to test a static package constant.

69. Of course, I was smitten by just such a bug while I developed this code.
PL/SQL conditional compilation page 54

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
arises in the function Calculated_Cbrts() (see page 81) which initializes the
constant Starting_Cbrts collection.

- And the loop in the body of Fast_Cbrt(), which aims to place the input value
in the interval to which it belongs, must succeed. Otherwise, again, there is a
“logical impossibility”.

• Finally, the choice between the two approaches, Alt=1 and Alt=2, was
governed by the ccflag Alt. Unlike the other flags, which were boolean in nature
and for which the notion of a list of values therefore does not apply, there
might in principle be more than two alternatives for consideration during
prototyping. I therefore designed Alt to act as a pls_integer and implemented a
error directive to ensure that it had only the values 1 or 2. Notice that the
implementation of Fast_Cbrt() has a significant amount of common code. (In
this example, all the common code except the declare section and the return
statement implements assertions and tracing.)

The final production version of the code would be unlikely to retain the Alt=1
code (the next section shows that Alt=2 is the better choice) and would probably
declare the subtype Math_Real unconditionally as binary_float. However, all the
other conditional compilation directives — using Asserting, Tracing, Trace_Step,
and Testing, could be expected to remain in place to support possible
maintenance cycles.

The test results

The first test compiles the body of Pkg for normal production use. It sets Tracing,
Trace_Step, Asserting, and Testing to null to disable these development-time quality
assurance features; it sets Use_Number to null to select the binary_float
implementation; and it sets Alt to select the faster Alt=2 cube root method. By
design, the invocation of Pkg.Run_The_Tests() raises an exception. The procedure
Test_It() catches this and reports “Run_The_Tests() is disabled for production
deployment.”. Test_It() also invokes Pkg.Some_Proc() — which models Pkg’s
intended public API; this runs without impact from the development-time
quality assurance features, passes its self-check, and reports “Some_Proc finished
OK.”. This output is shown on page 88.

The second test compiles the body of Pkg for maximal development-time quality
assurance. It uses the number implementation and the slower Alt=1 cube root
method. Notice that, by setting Trace_Step=65536, the Newton-Raphson
iteration for just nine representative cube root calculations is traced. This output
is listed on page 88 and page 89.

The next four tests exercise the number implementation with tracing turned off.
The first two of these tests, using Alt=1 and then Alt=2, are run with the
assertions turned on to ensure correctness. The second two of these four tests,
again using Alt=1 and then Alt=2, are run with the assertions turned off to allow
accurate timing. The output for these four tests is listed on page 90.

The final four tests repeat the previous four tests using the binary_float
implementation. The output for these four tests is listed on page 91.

Conclusion to the Fast_Cbrt() case study

Although the exercise — to implement a fast function to calculate the cube root
of a number lying within a relatively narrow range and to a stated low accuracy
PL/SQL conditional compilation page 55

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
— was invented in order to show the advantageous use of PL/SQL conditional
compilation, it is nevertheless interesting to comment on the success of the
implementation.

• The specially designed Alt=2 approach — which takes specific account of the
specified narrow range of input values to select a good starting estimate from
manageably small a pre-computed list — succeeded in producing a sufficiently
accurate result over a very finely sampled set of input values that covered the
specified range. The naïve Alt=1 approach also passed the correctness test.
But the performance test showed the Alt=2 approach to be very much faster.

• If one were forced to implement the fast cube root function in an earlier
release than Oracle Database 10g Release 1 — before the availability of the
IEEE datatypes for real numbers — then the Alt=2 approach is
overwhelmingly faster, by a factor of twenty, than the formula approach
(exponentiating one third of the natural logarithm).

• If one is able to use a modern version of Oracle Database — and for an
application such as this it would seem crazy not to — then the Alt=2 approach
less dramatically faster than the formula approach. I measured a performance
improvement factor of 2.5x when I tested the code on a Linux x86 machine
and a rather smaller improvement factor of 1.3x when I tested the code on
Windows XP Pentium machine.

Of course, the main conclusion is that the use of PL/SQL conditional
compilation helped me enormously this implementation project:

• it significantly increased my productivity when prototyping the two alternative
approaches.

• and it allowed my final deliverable to include “executable” documentation in
the form of latent assertions, tracing, and unit testing procedures.

I suggest that you try to imagine how you would have implemented all the quality
requirements for this project — enabling tracing on a sampling basis,
implementing assertions without penalizing performance in production
deployment, testing for correctness and performance of the body-only
procedure, and experimentally comparing the desirability of two (or more)
competing algorithm designs — without conditional compilation. I suspect that
you would be driven to implement what amounts to this functionality by hand by
formalizing a regime of uncommenting and commenting out what in the
implementation shown here was handled by using selection directives. Of course,
this would be substantially more time-consuming and — even worse —
substantially more error-prone.
PL/SQL conditional compilation page 56

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
HOW DOES PL/SQL CONDITIONAL COMPILATION COMPARE WITH
SIMILAR FEATURES IN OTHER PROGRAMMING ENVIRONMENTS?

Preprocessors have been around for as long as compilers. Wiki70 gives a good
general account which begins as follows.

“In computer science, a preprocessor is a program that takes text and
performs lexical conversions on it. The conversions may include macro
substitution, conditional inclusion, and inclusion of other files.”

As this implies, the preprocessor is usually a distinct program that runs before
the compiler proper. We know of no implementation, except that of PL/SQL
conditional compilation, where the input to the preprocessor and its output are
anything but ordinary operating system files. And in these other
implementations, inclusion of one file in another — usually in many other files
— is essential to the definition and the visibility of the “flags” that control
conditionalization.

The PL/SQL implementation is distinguished from the usual approach by these
unique features:

• The syntax and semantics of PL/SQL’s conditional compilation directives are
part of the definition of the PL/SQL language.

• PL/SQL’s conditional compilation is implemented as a step — and not the
first step — within the PL/SQL compiler. It is not a separate program that
runs before the compiler.

• The source text — as the PL/SQL compiler sees it71 — resides in the Oracle
Database and not on the file system.

• The primitive determinants of conditionalization — static package constants
and ccflags — are stored inside and are managed by Oracle Database. Therefore
— in order that PL/SQL conditional compilation can be fully functional for
the very wide range of applications that this paper has discussed — there is no
need for a mechanism to include one source fragment within another.

• The static package constants and ccflags used to express the test for a selection
directive are combined in a boolean expression which is evaluated at compile-
time using exactly the same mechanism in the Oracle executable that would
evaluate such boolean expressions at run time. This is the implementation that
guarantees (as was stated in the section The selection directive on page 6) that the
rules for evaluating the static boolean expression that governs the selection of
text for compilation are the same rules that the PL/SQL programmer has
learned for ordinary PL/SQL expressions. This helps us define the syntax and
semantics of conditional compilation as part of the definition of the PL/SQL
itself.

70. See en.wikipedia.org/wiki/Preprocessor

71. Think of the create or replace statement as doing two distinct operations: first it loads the text into
the catalog table that is exposed by the All_Source view family; and then it reads the source from
this and compiles it. Recall that the alter statement operates directly on the stored source from
the catalog.
PL/SQL conditional compilation page 57

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
http://en.wikipedia.org/wiki/Preprocessor

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
• The static package constants within selection directives set up dependencies in
exactly the same way that any reference from a compilation unit to an external
element sets up dependencies for that unit. The consequences of this —
possible invalidation and subsequent implicit recompilation — are well
understood by PL/SQL programmers. This mechanism completely removes
the need to construct and to maintain makefiles.

As Wiki says, not only do preprocessors usually support the inclusion of files,
but also they support macro substitution. PL/SQL conditional compilation in
Oracle Database 10g Release 2 supports neither of these features. However, there
is nothing in the design and present implementation that would prevent the
addition of these features in a later release. Notice, though, that opinion varies
on the desirability of relying on a highly functional preprocessor. Here are two
extracts from the Wiki article to conclude this section:

“...overuse of the preprocessor might yield quite chaotic code...”

“...use of preprocessors... getting less common as... languages provide more
abstract features rather than lexical-oriented ones.”
PL/SQL conditional compilation page 58

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
THE AVAILABILITY OF PL/SQL CONDITIONAL COMPILATION
IN ORACLE DATABASE 10g RELEASE 1 AND
IN ORACLE9i DATABASE RELEASE 2

Unusually, but for very compelling reasons, PL/SQL conditional compilation
has been made available in patchsets of releases of Oracle Database earlier than
the one that introduced the feature. It is available in the first release of Oracle
Database 10g from 10.1.0.4 onwards and in Oracle9i Database from 9.2.0.6
onwards.

• In 10.1.0.4, the feature is available by default but can be totally disabled by
setting the PL/SQL conditional compilation underscore parameter72 to
“disable condtional compilation”.

• In 9.2.0.6, the feature is totally disabled by default but can be made available by
setting the PL/SQL conditional compilation underscore parameter to “enable
condtional compilation”.

• From 10.273, the feature cannot be disabled and the PL/SQL conditional
compilation underscore parameter is obsolete.

This section explains the rationale for making the feature available in 10.1.0.4
and in 9.2.0.6 and describes the feature’s functionality restrictions — with
respect to the full 10.2 functionality — in these releases.

Of course, you can skip this section entirely if you will use PL/SQL conditional
compilation only in Oracle Database 10g Release 2 and later releases.

The Catch 22

ISVs generally support every currently supported release of Oracle Database.
The earliest of these is often two releases behind the latest release. For example,
at the time of writing, 10.2 is the latest release and 9.2 is still fully supported by
Oracle Corporation. Therefore, if PL/SQL conditional compilation had been
made available only from 10.2 onwards, then the benefit that motivated the
introduction of the feature (see Spanning different releases of Oracle Database with a
single source code corpus on page 46) would not have been realized until the second
major release after the one that introduced the feature; until then, ISVs will still
be supporting 10.1 — and this would not have had PL/SQL conditional
compilation. Oracle’s PL/SQL Team and Oracle’s Applications Division were
unanimous that such an outcome would have been unacceptable.

72. An underscore parameter is a special kind of initialization parameter. It is never documented.
When it has not been set, it is not listed in the v$parameter view. It cannot be set while the
instance is running (the attempt causes ORA-02095) and so it must be set either via the pfile or
by using “alter system ... scope = spfile”. Customers are permitted to set an underscore parameter
only under the direct guidance of Oracle Support.

73. This section will refer repeatedly to various major releases of Oracle Database. For brevity,
these nicknames will be used:

Oracle9i Database Release 1 . 9.0
Oracle9i Database Release 2 . 9.2
Oracle Database 10g Release 1 . 10.1
Oracle Database 10g Release 2 . 10.2
next major release of Oracle Database after 10.2 R.Next
PL/SQL conditional compilation page 59

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
This, then, is the Catch 22: in order that PL/SQL conditional compilation can
deliver its motivating benefit in the new Oracle Database release for which the
project was done, it must be made available — in patchsets — in each earlier
release that is still supported at the time that the new release becomes generally
available. This was one of the non-negotiable requirements; the design of the
feature took account of this from the outset.

The decision to make PL/SQL conditional compilation
available in 10.1 and in 9.2

Normally a new feature must be introduced only in a major release of Oracle
Database. However, the explanation of the Catch 22 shows that PL/SQL
conditional compilation warranted exceptional treatment. A very careful risk
analysis was conducted. It reached these conclusions:

• It was feasible to make the PL/SQL conditional compilation feature available
— with some functionality restrictions — in patchsets for 10.1 and for 9.274.

• The syntax for the new constructs (the selection directive, the inquiry directive, and
the error directive) was very carefully designed to guarantee the following:

- For an input source text that compiled without error in 10.1 (prior to the
10.1.0.4 patchset) and in 9.2 (prior to the 9.2.0.6 patchset), PL/SQL
conditional compilation will have no effect.75

- Conversely, PL/SQL source text that uses any of the new constructs will fail
to compile in an environment where PL/SQL conditional compilation does
not exist.

The use of the $ sign as the so-called trigger character guarantees these two
conclusions.

• The source text output by the conditional compilation stage goes through the
same subsequent compiler stages as it would in a release of Oracle Database
where PL/SQL conditional compilation does not exist.

• PL/SQL conditional compilation adds no measurable time to the compilation
of a source text that has no conditional compilation directives.

• The design of the feature allows the new compilation regime that supports
PL/SQL conditional compilation to coexist with the compilation regime from
before the advent of the feature. A simple switch can enable the new regime or
disable it in favor of the old regime. When the new regime is disabled,
compilation is guaranteed to be completely unaffected by the conditional
compilation stage. The choice of regime can be made using an underscore
parameter.

These conclusions were presented to senior management in both the
Development organization and the DDR organization76 for Oracle Database

74. Following a cost-benefit analysis it was decided to compromise; PL/SQL conditional
compilation is not available for 9.0.

75. This is achieved because, for such texts, the output from the conditional compilation stage will
be identical to the input. See How does PL/SQL conditional compilation work? on page 17.
PL/SQL conditional compilation page 60

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
and it was agreed to treat PL/SQL conditional compilation exceptionally as
follows:

• The feature would be made available in the 10.1.0.4 and 9.2.0.6 patchsets.

• The user-defined inquiry directive feature (which depends on the new-in-10.2
PLSQL_CCFlags parameter) would not be made available. This — and some
other minor restrictions — are described in the section Functionality restrictions in
10.1 and 9.2 on page 61.

• The PL/SQL conditional compilation underscore parameter would be
implemented to enable or disable conditional compilation. Its default would be
“enable condtional compilation” in 10.1.0.4 and “disable condtional compilation” in
9.2.0.6.

• The availability of PL/SQL conditional compilation in 10.1.0.4 would be
described in the Oracle Database Documentation Library but the availability in
9.2.0.6 would not. In line with normal policy, the PL/SQL conditional
compilation underscore parameter would not be documented.

The plan was carried out as described and, of course, PL/SQL conditional
compilation was subjected to extensive testing — both for correctness of the
new behavior it supports and for no impact on source text that makes no use of
the feature. The tests for 10.1.0.4 and 9.2.0.6 were conducted with both values
— “enable condtional compilation” and “disable condtional compilation” — for the
PL/SQL conditional compilation underscore parameter. There are no known
PL/SQL bugs caused by conditional compilation in any of 10.2.0.1, 10.1.0.4, or
9.2.0.6.

The PL/SQL conditional compilation underscore parameter

This paper intentionally does not give the name of the PL/SQL conditional
compilation underscore parameter that is used to reverse the default by enabling
PL/SQL conditional compilation in 9.2.0.6 or by disabling it in 10.1.0.4.

Customers who want to reverse the default must contact Oracle Support. A
Support Engineer will explain the procedure for setting the PL/SQL conditional
compilation underscore parameter.

Functionality restrictions in 10.1 and 9.2

No restrictions for the DBMS_DB_Version package

The DBMS_DB_Version package is installed, with appropriate source, in each of
10.1.0.4 and 9.2.0.6 (see Appendix C: The source code of the DBMS_DB_Version
package in 10.2, 10.1, and 9.2 on page 69). Its exposure does not depend on the
PL/SQL conditional compilation underscore parameter. Customers may use it
for any purpose. Code_48 shows a regular run-time if construct that determines

76. DDR — the Defects Diagnosis and Resolution organization — is responsible for determining
the causes of product bugs and fixing them. It administers the production of patchset releases.
PL/SQL conditional compilation page 61

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
the correct action by testing one of the constants exposed by the
DBMS_DB_Version package.

Compare this with Code_49.

Code_49 was derived “mechanically” from Code_48 simply by replacing the run-
time if construct keywords with their compile-time $if construct counterparts. In
this use case, PL/SQL conditional compilation is used to choose between
alternatives all of which are viable in each release of Oracle Database of interest.
This is a perfectly respectable application of the feature (we expect to see this use
in especially connection with self-tracing or self-debugging code), but the feature
is not required for this use. It is easy to see that Code_48 and Code_49 will give
identical behavior. Code_49 has a theoretical advantage over Code_48: it has less
executable code and it runs faster77. But it has the significant practical
disadvantage that it requires that the PL/SQL conditional compilation
underscore parameter is actively set to “enable condtional compilation” in 9.2.0.6.

Developers are discouraged from using PL/SQL conditional compilation in
9.2.0.6 if its only purpose is to support the compile-time $if construct where the
run-time if construct could be used instead.

No restrictions for the error directive

The error directive per se is supported in each of 10.2, 10.1, and 9.2. However, some
of its value depends on being able to report an erroneous value of a static
package constant of datatype pls_integer or of an inquiry directive that produces this
datatype. This depends on using the To_Char() built-in (see Restrictions for the
To_Char() built-in on page 63).

Restrictions for the inquiry directive

The PLSQL_CCFlags PL/SQL compilation parameter is not implemented in
10.1 or 9.2 and is therefore not reflected in the corresponding dictionary views
(the All_PLSQL_Object_Settings view family in 10.1 and the All_Stored_Settings
view family in 9.2). The PL/SQL compilation parameters (in the release in
question), PLSQL_Unit, and PLSQL_Line are supported.

When an inquiry directive refers to an unknown ccflag, the compilation error
PLS-00175: unknown inquiry directive... is raised. (This is the case both when the
source is not wrapped and when it is wrapped.)

77. The differences and similarities between the compile-time $if construct and the run-time if
construct are discussed in the section Choosing between the compile-time $if construct and the run-time
if construct on page 20.

-- Code_48
if DBMS_DB_Version.Ver_LE_9_2 then
 Print('do something right in 9.2');
else
 Print('do something right in >= 10.1');
end if;

-- Code_49
$if DBMS_DB_Version.Ver_LE_9_2 $then
 Print('do something right in 9.2');
$else
 Print('do something right in >= 10.1');
$end
PL/SQL conditional compilation page 62

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Because of these restrictions, we expect that the inquiry directive will be used in
10.1 and 9.2 only to test expressions based on static package constants.

Restrictions for the To_Char() built-in

In 10.2, an invocation of the To_Char() built-in with just one actual argument of
datatype pls_integer is taken by PL/SQL conditional compilation to be a static
function78. This means that it can be used in the error directive as shown in
Code_50.

An attempt to compile P() causes this compilation error:

In 10.1 and 9.2, an invocation of the To_Char() built-in with just one actual is not
taken to be static. Therefore, in 10.1, Code_50 fails to compile with this error:

In 9.2, the PL/SQL compilation parameter PLSQL_Optimize_Level is unknown,
but a corresponding attempt to use the error directive with a static package
constant of datatype pls_integer fails in the same way.

This restriction will be met only in connection with the error directive.

Notice that in 10.2 — but only here — the conversion from pls_integer may
sometimes be implicit. Code_50 may be rewritten as Code_51.

Restrictions for the DBMS_Preprocessor package

The full functionality, as implemented in 10.2 has been explained earlier (see
Using the DBMS_Preprocessor package to see the conditional compilation output on
page 17).

The DBMS_Preprocessor package is present in 10.1 and has identical behavior to
10.2. (Of course, the PL/SQL conditional compilation constructs themselves are
limited with respect to 10.2 as already discussed and so some source texts that
would compile without error in 10.2 will cause compilation errors in 10.1.) Its
presence is unaffected by the current value of the PL/SQL conditional
compilation underscore parameter but, of course, it is meaningless to use it
unless this has the value “enable condtional compilation”.

The DBMS_Preprocessor package is not present in 9.2.

78. To_Char(x, f, n) where x is a pls_integer static expression and f and n are varchar2 static expressions
is also taken to be a static function.

-- Code_50
procedure P is
begin
 $error 'wrong optimize level:'||
 To_Char($$PLSQL_Optimize_Level) $end
end P;

PLS-00179: $ERROR: wrong optimize level:2

PLS-00178: a static character expression must be used

-- Code_51
procedure P is
begin
 $error 'wrong optimize level:'||$$PLSQL_Optimize_Level $end
end P;
PL/SQL conditional compilation page 63

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
The purpose of the Ver_LE_ constants
in the DBMS_DB_Version package

Look again at Code_44 on page 48. Why does it begin with this?

Why does it not just test on Version and Release explicitly? The two approaches
express precisely the same condition and, of course, produce the same result, as
Code_52 and Code_53 show.

The rationale for preferring the approach used in Code_5279 can be understood
only in the light of plans for the next major release of Oracle Database after 10.2
— hereinafter R.Next — to introduce the so-called fine-grained-dependency
feature80. This feature will replace the dependency model seen through 10.2 with

79. Code_53 is also more verbose than Code_52 and there is some risk of programmer error — but
that is not the important point here.

80. The following account of the planned fine-grained-dependency feature represents Oracle’s
PL/SQL Team’s intention at the time of writing. It is not a commitment to deliver the functionality
in next major release of Oracle Database after 10.2 nor in any subsequent release.

$if DBMS_DB_Version.Ver_LE_9_2 $then

-- Code_52
procedure P is
begin
 $if DBMS_DB_Version.Ver_LE_9_2 $then
 Print('Ver <= 9.2');
 $else
 Print('Ver > 9.2');
 $end
end P;

-- Code_53
procedure P is
begin
 $if (DBMS_DB_Version.Version = 9
 and DBMS_DB_Version.Release <= 2)
 or DBMS_DB_Version.Version < 9
 $then
 Print('Ver <= 9.2');
 $else
 Print('Ver > 9.2');
 $end
end P;
PL/SQL conditional compilation page 64

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
a refined model designed to reduce consequential invalidation. Run the
SQL*Plus script shown in Code_54 in 10.2.

There is no logical requirement that the addition of the new subprogram P2() to
Pkg should invalidate the compilation unit P — and in R.Next it will not. In 10.2,
the metadata expresses the fact that compilation unit P depends on compilation
unit Pkg as a whole. In R.Next, the metadata will express the fact that
compilation unit P depends on the element Pkg.P1.

Therefore, when Code_52 is compiled in R.Next, the metadata will express the
fact that compilation unit P depends on the element
DBMS_DB_Version.Ver_LE_9_2; and when Code_53 is compiled in R.Next, the
metadata will express the fact that compilation unit P depends on the two
elements DBMS_DB_Version.Version and DBMS_DB_Version.Release.

A constant such as DBMS_DB_Version.Ver_LE_9_2 will never change its value
in any later release following the one that introduces it. But at least one of the
constants DBMS_DB_Version.Version and DBMS_DB_Version.Release will change
in value from one major release to the next.

Therefore, using the Ver_LE_ constants will “future-proof ” code against
unnecessary invalidations in the following circumstances: application code that
tests one or more Ver_LE_ constant is installed and deployed; then the Oracle
Database is upgraded “under the feet” of that application.

-- Code_54
create package Pkg is
 procedure P1;
end Pkg;
/
create procedure P is
begin
 Pkg.P1();
end P;
/
-- Shows 'VALID'
select Status from User_Objects
 where Object_Type = 'PROCEDURE' and Object_Name = 'P'
/
create or replace package Pkg is
 procedure P1;
 procedure P2;
end Pkg;
/
-- Shows 'INVALID'
select Status from User_Objects
 where Object_Type = 'PROCEDURE' and Object_Name = 'P'
/
alter procedure P compile reuse settings
/
-- Shows 'VALID'
select Status from User_Objects
 where Object_Type = 'PROCEDURE' and Object_Name = 'P'
/

PL/SQL conditional compilation page 65

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
CONCLUDING REMARKS

This paper has shown that PL/SQL conditional compilation is elegantly
designed, easy to understand, and easy to use — not least because the syntax and
semantics of the feature are part of the PL/SQL language itself.

It has also shown, by examining seven distinct use cases, that its simplicity belies
its power.

• It provides the individual developer with new techniques for prototyping and
for tracing that will boost quality of code and personal productivity.

• It lets development managers define new best practices to formalize quality
assurance.

• It supports a new paradigm for component based design.

• It allows architects to create designs that use the latest SQL and PL/SQL
features brought by the most recent Oracle Database in such a way that
applications which must also run in the environment of earlier releases can be
viable when these new features are not available.

Enjoy.

Bryn Llewellyn,
PL/SQL Product Manager, Oracle Headquarters
bryn.llewellyn@oracle.com
10-November-2005
PL/SQL conditional compilation page 66

mailto:bryn.llewellyn@oracle.com
www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
APPENDIX A:
CHANGE HISTORY

20-September-2005

• First published version.

26-September-2005

• Correcting minor typos.

14-October-2005

• New wording in the section The PL/SQL conditional compilation underscore
parameter on page 61.

• Changing footnote numbering to continue from the previous footnote
throughout the whole paper. (Before, the numbering restarted at 1 on each
page.)

• Correcting minor typos.

18-October-2005

• Correcting minor typos.

10-November-2005

• Adding the description of how to use a DDL trigger to re-write the
conditional compilation control package in the use case Component based
installation on page 40.

• Correcting minor typos.
PL/SQL conditional compilation page 67

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
APPENDIX B:
ORACLE DATABASE DOCUMENTATION LIBRARY REFERENCES

PL/SQL conditional compilation is explained in the PL/SQL User's Guide and
Reference book. The section Understanding Conditional compilation
download.oracle.com/docs/cd/B19306_01/appdev.102/b14261/overview.htm#sthref188
gives a brief overview. The section Conditional compilation
download.oracle.com/docs/cd/B19306_01/appdev.102/b14261/fundamentals.htm#sthref545
gives the full explanation.

The DBMS_DB_Version and DBMS_Preprocessor packages are described in the
PL/SQL Packages and Types Reference book. DBMS_DB_Version is described here
download.oracle.com/docs/cd/B19306_01/appdev.102/b14258/d_dbver.htm#sthref2260
and DBMS_Preprocessor is described here
download.oracle.com/docs/cd/B19306_01/appdev.102/b14258/d_preproc.htm#sthref5443

The SQL syntax to set the PLSQL_CCFlags PL/SQL compilation parameter at
system level, at session level, and — as part of the alter <plsql unit> compile
command — for an individual PL/SQL compilation unit is given in the SQL
Reference book
download.oracle.com/docs/cd/B19306_01/server.102/b14200/toc.htm

The All_PLSQL_Object_Settings view family, which shows the value of
PLSQL_CCFlags for a PL/SQL compilation unit is described in the Reference
book
download.oracle.com/docs/cd/B19306_01/server.102/b14237/toc.htm
PL/SQL conditional compilation page 68

http://download.oracle.com/docs/cd/B19306_01/appdev.102/b14261/overview.htm#sthref188
http://download.oracle.com/docs/cd/B19306_01/appdev.102/b14258/d_dbver.htm#sthref2260
http://download.oracle.com/docs/cd/B19306_01/appdev.102/b14258/d_preproc.htm#sthref5443
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/toc.htm
http://download.oracle.com/docs/cd/B19306_01/server.102/b14237/toc.htm
http://download.oracle.com/docs/cd/B19306_01/appdev.102/b14261/fundamentals.htm#sthref545
www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
APPENDIX C:
THE SOURCE CODE OF THE DBMS_DB_VERSION PACKAGE
IN 10.2, 10.1, AND 9.2

The easiest way to be certain what the values are of the static constants that the
DBMS_DB_Version package exposes in a particular Oracle Database of interest
is to connect as any user and to run this query:

The constants convey information only about the version number and the
release number for the Oracle Database and so the values will not change when a
patchset is applied.

The results of the all_source query for each of 10.2, 10.1, and 9.2 are shown below.
To make comparison easier, the comments were removed by hand.

For 10.2:

For 10.1:

For 9.2:

select text from all_source
 where owner = 'SYS'
 and name = 'DBMS_DB_VERSION'
 and type = 'PACKAGE'
 order by line

package DBMS_DB_Version is
 Version constant pls_integer := 10;
 Release constant pls_integer := 2;

 Ver_LE_9_1 constant boolean := false;
 Ver_LE_9_2 constant boolean := false;
 Ver_LE_9 constant boolean := false;
 Ver_LE_10_1 constant boolean := false;
 Ver_LE_10_2 constant boolean := true;
 Ver_LE_10 constant boolean := true;
end DBMS_DB_Version;

package DBMS_DB_Version is
 Version constant pls_integer := 10;
 Release constant pls_integer := 1;

 Ver_LE_9_1 constant boolean := false;
 Ver_LE_9_2 constant boolean := false;
 Ver_LE_9 constant boolean := false;
 Ver_LE_10_1 constant boolean := true;
 Ver_LE_10 constant boolean := true;
end DBMS_DB_Version;

package DBMS_DB_Version is
 version constant pls_integer := 9;
 release constant pls_integer := 2;

 Ver_LE_9_1 constant boolean := false;
 Ver_LE_9_2 constant boolean := true;
 Ver_LE_9 constant boolean := true;
end DBMS_DB_Version;
PL/SQL conditional compilation page 69

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
APPENDIX D:
SELF-CONTAINED SQL*PLUS SCRIPT
FROM WHICH CODE_44 IS AN EXTRACT

Code_44 on page 48 shows an extract of the following script from the $if through
to the $end.

-- Connect as an ordinary "connect, resource" user
-- in turn to a 9.2.0.6 database, to a 10.1.0.4 database,
-- and to a 10.2 database.

CONNECT Usr/p@rel_10_2
create procedure Print(v in varchar2) is
begin
 DBMS_Output.Put_Line(v);
end Print;
/
create table Tbl (m integer, n integer)
/
create procedure P is
 subtype Index_t is pls_integer;
 type t is table of Tbl%rowtype index by Index_t;
 Sparse t; Dense t;
begin
 -- make a sparse table w/ 2500 elements
 for k in 1..50
 loop
 for j in 1..50
 loop
 Sparse(k*100 + j).n := k*j;
 Sparse(k*100 + j).m := k*j;
 end loop;
 end loop;

 $if DBMS_DB_Version.Ver_LE_9_2 $then

 Print('Fallback. Selected in 9.2 and earlier.');
 declare k Index_t := 1; j Index_t := Sparse.First();
 begin
 while j is not null loop
 Dense(k) := Sparse(j);
 j := Sparse.Next(j);
 k := k + 1;
 end loop;
 end;

 forall j in Dense.First..Dense.Last()
 insert into Tbl values Dense(j);

 $else

 Print('Ideal. Selected in 10.1 and later.');
 forall j in indices of Sparse
 insert into tbl values Sparse(j);

 $end
 declare c integer;
 begin
 select Count(*) into c from Tbl;
 Print('"select Count(*) from Tbl" gives '||c);
 end;
 rollback;
end;
/
begin P(); end;
/

PL/SQL conditional compilation page 70

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
APPENDIX E:
TRACKING INFORMATION FROM THE BUG DATABASE

Bug #3644582 “PL/SQL conditional compilation is not supported” against 10.2 was
filed to support the requests to make the feature available in a 10.1 patchset and
in a 9.2 patchset. The report contains this:

auto patchset request #21513 created in bug #3660882 for fix in 10.1.0

and this:

patchset request #21512 created in bug #3660881 for fix in 9.2.0

Bug #3660882 is fixed in 10.1.0.4 and bug #3660881 is fixed in 9.2.0.6.

None of these bugs is mentioned in the “bugs fixed” list posted on Metalink for
either of these two patchsets:

Metalink Note:283897.1
Bugs fixed in the 9.2.0.6 Patch Set
metalink.oracle.com/metalink/plsql/showdoc?db=NOT&id=283897.1

Metalink Note:295763.1
Bugs fixed in the 10.1.0.4 Patch Set
metalink.oracle.com/metalink/plsql/showdoc?db=NOT&id=295763.1
PL/SQL conditional compilation page 71

http://bug.us.oracle.com/pls/bug/webbug_print.show?c_rptno=3644582
http://bug.us.oracle.com/pls/bug/webbug_print.show?c_rptno=3660882
http://bug.us.oracle.com/pls/bug/webbug_print.show?c_rptno=3660881
http://metalink.oracle.com/metalink/plsql/showdoc?db=NOT&id=283897.1
http://metalink.oracle.com/metalink/plsql/showdoc?db=NOT&id=295763.1
www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
APPENDIX F:
THE NEWTON-RAPHSON FORMULA FOR IMPROVING
AN APPROXIMATION FOR THE CUBE ROOT OF A NUMBER

The Newton-Raphson method (also called Newton’s method) is a well known
root-finding algorithm81 that uses the first few terms of the Taylor series of a
function in the vicinity of a suspected root of a function.

Suppose that the function is f(x). A root is a value of x for which f(x) is zero.
Suppose that xold is the current estimate of the root. The following formula gives
an improved estimate — xnew — of the root:

The following function has its root when x is the real82 cube root of n.

Here is its first derivative:

Substituting f(x) and f
'(x) in the formula for the improved estimate of the root

gives this:

Finally, this is rearranged for computation thus:

In the function Fast_Cbrt(), n is the input formal parameter and Root is the local
variable which, after sufficient improvement, will be the function’s return value.
The final formula therefore becomes this PL/SQL statement83 which is
repeated to give an acceptable final approximation:

81. For example, www.google.com/search?q=%22Newton-Raphson+method%22
leading to
mathworld.wolfram.com/NewtonsMethod.html

82. The requirements specification for the Fast_Cbrt() function demands that it must return only
the real cube root of its input; the imaginary roots are of no interest here.

83. Such computer program versions abound on the internet. The code
fXnext = (2*fX*fX*fX + fPassed)/(3*fX*fX);
is given here: www.isr.umd.edu/~austin/ence756.d/homework1.html#sec5

xnew = xold –
f(xold)
f
'(xold)

f(x) = x3 – n

f
'(x) = 3x2

xnew = xold –
xold

3 – n
3xold

2

xnew =
2xold

3 + n

3xold
2

Root := (Two*Root*Root*Root + n)/(Three*Root*Root);
PL/SQL conditional compilation page 72

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
http://www.google.com/search?q=%22Newton-Raphson+method%22
http://mathworld.wolfram.com/NewtonsMethod.html
http://www.isr.umd.edu/~austin/ence756.d/homework1.html#sec5

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
APPENDIX G:
SQL*PLUS SCRIPTS FOR THE CASE STUDY

This appendix lists the complete, self-contained SQL*Plus scripts that provide
the basis for the section Case study: implementing unit testing, assertions, and tracing for a
fast cube root body-private helper function on page 49. Read that section before reading
the code. It specifies the requirements for the Fast_Cbrt() function and explains
the algorithm that is used to implement it.

The code has been formatted for this appendix by first eliding the details
(sometimes known as folding) and by using hyperlinks progressively to disclose
these details. Here is an example:

 > page 82

The scripts are available for download here:

www.oracle.com/technology/tech/pl_sql/files/Fast_Cube_Root_Case_Study.zip

Master_Script.sql invokes further scripts to create an ordinary user, to create all the
code objects, and to exercise these under various schemes for conditionalization.

The units of progressive disclosure have been arranged so that each successive
view takes up no more than one page.

-- Master_Script.sql
--
SPOOL Master_Script.txt
PROMPT Master_Script.txt
PROMPT ~~~~~~~~~~~~~~~~~

-- Create a new ordinary user,
-- the Print procedure,
-- and the package specification
@@Setup.sql

-- Now, as the filenames imply...
@@Create_Package_Body.sql
@@Create_Test_Harness.sql
@@Exercise_Test_Harness.sql
SPOOL OFF
PL/SQL conditional compilation page 73

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
http://www.oracle.com/technology/tech/pl_sql/files/Fast_Cube_Root_Case_Study.zip

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
-- Setup.sql
--
-- You'll need to change the password(s) and the connect string.
-- You might want to change the name "Usr" to avoid conflicts.
--
-- (Quietly) dropping then creating the user documents clearly
-- that it's an "ordinary" user with no required pre-existing
-- objects.
CONNECT System/p@Rel_10_2
begin
 declare
 -- user 'USR' does not exist
 ORA_01918 exception; pragma Exception_Init(ORA_01918, -01918);
 begin
 execute immediate '
 drop user Usr cascade';
 exception when ORA_01918 then null; end;

 execute immediate '
 grant Create Session, Resource to Usr identified by p';
end;
/

-- You might need to start here using, for example, "Scott" instead of "Usr".
-- If so, use "create or replace" rather than "create" in the following.
CONNECT Usr/p@Rel_10_2

-- Print is effectively a "synonym" for DBMS_Output.Put_Line
-- to save line length in the important code.
create procedure Print(V in varchar2) is
begin
 DBMS_Output.Put_Line(V);
end Print;
/

create package Pkg is
 -- This models a to-be-exposed ordinarily subprogram that
 -- uses the helper according to the invariants it assumes.
 procedure Some_Proc;

 -- Not intended for use in production. There, it will raise an exception.
 procedure Run_The_Tests;
end Pkg;
/

PL/SQL conditional compilation page 74

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
-- Create_Package_Body.sql
--
-- General safety practice. Ensure that no earlier regime upsets the intention.
-- But first save the current PLSQL_CCFlags value.
-- See "Restore the saved PLSQL_CCFlags" at the end.
VARIABLE SAVED_PLSQL_CCFLAGS VARCHAR2(512)
begin :SAVED_PLSQL_CCFLAGS := $$PLSQL_CCFlags; end;
/
alter session set PLSQL_CCFlags = 'Alt:1'
/
create package body Pkg is
 --
 -- SUBTYPES, TYPES, GLOBAL CONSTANTS, AND SUBPROGRAM FORWARD DECLARATIONS
 > page 76

 --
 -- CONDITIONALIZED CODE FOR TESTING, ASSERTING, AND TRACING.
 -- Helpers to implement the assertions and to format the trace o/p.
 $if $$Asserting or $$Tracing or $$Testing $then
 > page 77
 $end

 -- Used ONLY when $$Testing is true.
 $if $$Testing $then
 -- The reference standard for accuracy for the datatype.
 -- Used to compare speed and to measure the maximum fractional error
 -- that Fast_Cbrt has (in its advertised range).
 function Slow_Cbrt(n in Math_Real) return Math_Real is
 > page 78
 end Slow_Cbrt;

 procedure Run_The_Tests is
 > page 79
 end Run_The_Tests;

 $else
 procedure Run_The_Tests is
 begin
 Raise_Application_Error(-20000, '~#^*+{obscure}|[]<>?');
 end Run_The_Tests;
 $end

 --
 -- ORDINARY CODE FOR USE IN THE PRODUCTION DEPLOYMENT
 $if $$Alt = 2 $then
 function Calculated_Thresholds return Math_Reals_t is
 > page 81
 end Calculated_Thresholds;

 function Calculated_Cbrts return Math_Reals_t is
 > page 81
 end Calculated_Cbrts;
 $end

 function Fast_Cbrt(n in Math_Real) return Math_Real is
 > page 82
 end Fast_Cbrt;

 procedure Some_Proc is
 > page 83
 end Some_Proc;
end Pkg;
/
-- Restore the saved PLSQL_CCFlags. This script might fit into a bigger install picture.
declare Quote constant char(1) := '''';
begin
 execute immediate '
 alter session set PLSQL_CCFlags = '||Quote||:SAVED_PLSQL_CCFLAGS||Quote;
end;
/

PL/SQL conditional compilation page 75

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
 -- SUBTYPES, TYPES, GLOBAL CONSTANTS, AND SUBPROGRAM FORWARD DECLARATIONS
 subtype Math_Real is $if $$Use_Number $then number;
 $else binary_float;
 $end

 function Fast_Cbrt(n in Math_Real) return Math_Real;

 -- Ensure no confusion when using literals in overload situations.
 Zero constant Math_Real := 0.0;
 One constant Math_Real := 1.0;
 Two constant Math_Real := 2.0;
 Three constant Math_Real := 3.0;
 Ten constant Math_Real := 10.0;
 Twenty constant Math_Real := 20.0;
 One_Hundred constant Math_Real := 100.0;
 One_Half constant Math_Real := One/Two;
 One_Third constant Math_Real := One/Three;
 Sqrt_Two constant Math_Real := Sqrt(Two);

 -- The bounds within which the input to Fast_Cbrt() must lie.
 Lower_Limit constant Math_Real := One;
 Upper_Limit constant Math_Real := 32767.0;

 $if $$Alt = 2 $then
 -- The choice determines the accuracy of the cube root
 -- using just one N-R iteration.
 Number_Of_Thresholds constant pls_integer := 13;
 -- Ideally you'd write type Math_Reals_t is varray(Number_Of_Thresholds)...
 type Math_Reals_t is varray(13) of Math_Real;

 -- These provide sufficiently good starting approximations
 -- that just one N-R iteration is needed.
 function Calculated_Thresholds return Math_Reals_t;
 Thresholds constant Math_Reals_t := Calculated_Thresholds();

 function Calculated_Cbrts return Math_Reals_t;
 Starting_Cbrts constant Math_Reals_t := Calculated_Cbrts();
 $end
PL/SQL conditional compilation page 76

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
 -- Helpers to implement the assertions and to format the trace o/p.
 $if $$Asserting or $$Tracing or $$Testing $then
 Cubed_Fractional_Error_Limit constant Math_Real := 0.07;

 -- Support to trace only in every Trace_Step'th call to Fast_Cbrt.
 Tracing_Counter pls_integer := 0;
 Trace_In_Fast_Cbrt boolean := false;
 Trace_In_NR boolean;

 -- To format the trace o/p.
 function Tr(r in Math_Real) return varchar2 is
 begin
 return Lpad(To_Char(r, '99999.999999'), 20);
 end Tr;

 procedure Show_N_And_Root_N(n Math_Real, r in Math_Real) is
 begin
 Print(Tr(n)||Tr(r));
 end Show_N_And_Root_N;

 -- When asserting, check the input to Fast_Cbrt and Slow_Cbrt
 procedure Assert_Valid_Input(Method in varchar2, n in Math_Real) is
 begin
 if n is null then
 Raise_Application_Error(-20000, Method||': Input value is null');
 elsif n > Upper_Limit then
 Raise_Application_Error(-20000, Method||': Input value is too big');
 elsif n < Lower_Limit then
 Raise_Application_Error(-20000, Method||': Input value is too small');
 end if;
 end Assert_Valid_Input;

 -- When asserting, check - in Fast_Cbrt and Slow_Cbrt - that
 -- the result cubed is close enough to the input value.
 procedure Assert_Cbrt_Cubed_Gives_Input(
 Method in varchar2, n in Math_Real, r in Math_Real)
 is
 begin
 if r is null then
 Raise_Application_Error(-20000, Method||': root is null');
 else
 declare
 Cubed_Fractional_Error Math_Real := Abs(r*r*r - n)/n;
 begin
 if Cubed_Fractional_Error > Cubed_Fractional_Error_Limit then
 Show_N_And_Root_N(n, r);
 Raise_Application_Error(-20000,
 Method||': cubed error too big: '||Cubed_Fractional_Error);
 end if;
 end;
 end if;
 end Assert_Cbrt_Cubed_Gives_Input;
 $end
PL/SQL conditional compilation page 77

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
 function Slow_Cbrt(n in Math_Real) return Math_Real is
 Root Math_Real;
 begin
 $if $$Asserting $then Assert_Valid_Input('Slow_Cbrt', n); $end

 Root := Exp(Ln(n)/Three);

 $if $$Asserting $then Assert_Cbrt_Cubed_Gives_Input('Slow_Cbrt', n, Root); $end
 return Root;
 end Slow_Cbrt;
PL/SQL conditional compilation page 78

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
 procedure Run_The_Tests is
 Procedure Rule_Off is
 begin
 Print(Rpad('-', 60, '-'));
 end Rule_Off;

 procedure Time_Slow_And_Fast is
 > page 80
 end Time_Slow_And_Fast;

 procedure Find_Max_Fractional_Error is
 > page 80
 end Find_Max_Fractional_Error;
 begin
 Rule_Off();
 $if $$Use_Number $then
 Print('Number version.');
 $else
 Print('IEEE version.');
 $end

 -- Fast_Cbrt will cause a compile error if Alt not in (1, 2)
 $if $$Alt = 1 $then
 Print('Crude estimate. Iterate to tolerance.');
 $elsif $$Alt = 2 $then
 Print('Good estimate. Just one iteration.');
 $end

 $if $$Asserting $then
 Print('Assertions turned on.');
 $else
 Print('Assertions turned off.');
 $end

 $if $$Tracing and $$Alt = 2 $then
 for j in 1..Number_Of_Thresholds-1 loop
 Print(Tr(Thresholds(j))||Tr(Starting_Cbrts(j)));
 end loop;
 Print(Tr(Thresholds(Number_Of_Thresholds)));
 $end

 Time_Slow_And_Fast();
 Find_Max_Fractional_Error();

 Print(Chr(10)||'All helper tests for Pkg succeeded.');
 Rule_Off();
 end Run_The_Tests;
PL/SQL conditional compilation page 79

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
 procedure Time_Slow_And_Fast is
 Increment constant Math_Real := One/Twenty;
 v Math_Real;
 r Math_Real;
 t0 integer; t1 integer;
 procedure Show_Time(What in varchar2, t in integer) is
 begin
 Print(Rpad(What, 30, '.')||Lpad(t ,4)||' centiseconds');
 end Show_Time;
 begin
 v := Lower_Limit;
 t0 := DBMS_Utility.Get_CPU_Time();
 while v <= Upper_Limit loop
 r := Slow_Cbrt(v);
 v := v + Increment;
 end loop;
 t1 := DBMS_Utility.Get_CPU_Time();
 Show_Time('Slow_Cbrt', (t1-t0));

 v := Lower_Limit;
 t0 := DBMS_Utility.Get_CPU_Time();
 while v <= Upper_Limit loop
 r := Fast_Cbrt(v);
 v := v + Increment;
 end loop;
 t1 := DBMS_Utility.Get_CPU_Time();
 Show_Time('Fast_Cbrt', (t1-t0));
 end Time_Slow_And_Fast;

 procedure Find_Max_Fractional_Error is
 Increment constant Math_Real := One/Twenty;
 v Math_Real;
 Max_Fractional_Error Math_Real := Zero;
 function Fractional_Error(
 n in Math_Real) return Math_Real
 is
 Fast_R constant Math_Real := Fast_Cbrt(n);
 Slow_R constant Math_Real := Slow_Cbrt(n);
 begin
 return Abs(Fast_R - Slow_R)/Slow_R;
 end Fractional_Error;
 begin
 $if $$Tracing $then
 Trace_In_Fast_Cbrt := true;
 $end

 v := Lower_Limit;
 while v <= Upper_Limit loop
 Max_Fractional_Error := Greatest(Max_Fractional_Error, Fractional_Error(v));
 v := v + Increment;
 end loop;

 declare t varchar2(80) := To_Char(Max_Fractional_Error, '0.99999');
 begin
 Print('Max_Fractional_Error:'||Lpad(t, 19));
 end;

 $if $$Tracing $then
 Trace_In_Fast_Cbrt := false;
 $end
 end Find_Max_Fractional_Error;
PL/SQL conditional compilation page 80

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
 function Calculated_Thresholds return Math_Reals_t is
 Results Math_Reals_t := Math_Reals_t();
 No_Of_Cbrts constant Math_Real := Number_Of_Thresholds-1;

 -- Want the biggest threshold to be just greater than Upper_Limit
 Lim_Plus constant Math_Real := Upper_Limit + One_Half;
 -- Divide the input range up logarithmically.
 f constant Math_Real := Exp(Ln(Lim_Plus)/No_Of_Cbrts);
 -- For a safe comparison
 Lim_Minus constant Math_Real := Upper_Limit - One_Half;
 n pls_integer := 1;
 begin
 Results.Extend(Number_Of_Thresholds);
 Results(n) := Lower_Limit;
 while Results(n) < Lim_Minus loop
 n := n + 1;
 Results(n) := Results(n-1)*f;
 end loop;

 $if $$Asserting $then
 if Results.Count() <> Number_Of_Thresholds then
 Raise_Application_Error(-20000,
 'function Calculated_Thresholds: Logic Error.');
 end if;
 $end
 return Results;
 end Calculated_Thresholds;

 function Calculated_Cbrts return Math_Reals_t is
 Results Math_Reals_t := Math_Reals_t();
 begin
 -- There's one fewer starting cube roots than thresholds because
 -- the starting values are in the gaps, derived from
 -- the geom. mean of adjacent thresholds.
 Results.Extend(Number_Of_Thresholds-1);
 for j in 2..Thresholds.Last() loop
 declare
 Geom_Mean constant Math_Real := Sqrt(Thresholds(j-1)*Thresholds(j));
 begin
 -- This is exactly the implementation of Slow_Cbrt.
 -- But Slow_Cbrt, as written with the assertions, is needed
 -- only for unit Testing
 Results(j-1) := Exp(Ln(Geom_Mean)/Three);
 end;
 end loop;

 $if $$Asserting $then
 if Results.Count() <> Number_Of_Thresholds-1 then
 Raise_Application_Error(-20000,
 'function Calculated_Cbrts: Logic Error.');
 end if;
 $end
 return Results;
 end Calculated_Cbrts;
PL/SQL conditional compilation page 81

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
 function Fast_Cbrt(n in Math_Real) return Math_Real is
 Root Math_Real := null;
 begin
 $if $$Asserting $then Assert_Valid_Input('Fast_Cbrt', n); $end

 -- Starting Approximation.
 $if $$Alt = 1 $then
 Root := n/One_Hundred;

 $elsif $$Alt = 2 $then
 declare
 Idx pls_integer := Number_Of_Thresholds;
 begin
 while Idx > 0 loop
 if n >= Thresholds(Idx) then
 Root := Starting_Cbrts(Idx);
 exit;
 end if;
 Idx := Idx - 1;
 end loop;
 end;
 $if $$Asserting $then
 if Root is null then Raise_Application_Error(-20000,
 'Fast_Cbrt: Starting Approximation is null');
 end if;
 $end

 $else
 $error 'Alt must be 1 or 2' $end
 $end

 $if $$Tracing $then
 if Trace_In_Fast_Cbrt then
 Tracing_Counter := Tracing_Counter + 1;
 if Remainder(Tracing_Counter, $$Trace_Step) = 0 then
 Print(null);
 Show_N_And_Root_N(n, Root);
 Trace_In_NR := true;
 else
 Trace_In_NR := false;
 end if;
 end if;
 $end

 -- Newton-Raphson improvement.
 $if $$Alt = 1 $then
 -- The classic convergence test.
 declare
 Tolerance constant Math_Real := 0.01;
 Last_Root Math_Real := n;
 begin
 while Abs(Root - Last_Root)/Root > Tolerance loop
 Last_Root := Root;
 Root := (Two*Root*Root*Root + n)/(Three*Root*Root);
 $if $$Tracing $then
 if Trace_In_Fast_Cbrt and Trace_In_NR then
 Print(Lpad(' ', 20)||Tr(Root));
 end if;
 $end
 end loop;
 end;

 $elsif $$Alt = 2 $then
 -- It is now sufficient to iterate just ONCE because the starting approxn is so good.
 Root := (Two*Root*Root*Root + n)/(Three*Root*Root);
 $if $$Tracing $then
 if Trace_In_Fast_Cbrt and Trace_In_NR then
 Print(Lpad(' ', 20)||Tr(Root));
 end if;
 $end
 $end

 $if $$Asserting $then Assert_Cbrt_Cubed_Gives_Input('Fast_Cbrt', n, Root); $end
 return Root;
 end Fast_Cbrt;
PL/SQL conditional compilation page 82

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
 procedure Some_Proc is
 n1 constant Math_Real := 200;
 n2 constant Math_Real := 300;
 s Math_Real;
 Expected_s constant Math_Real := 12.5;
 Epsilon constant Math_Real := 0.03;
 begin
 -- Notice that n1 and n2 are inside the supported range for Fast_Cbrt.
 if n1 < Lower_Limit or
 n2 < Lower_Limit or
 n1 > Upper_Limit or
 n2 > Upper_Limit
 then Raise_Application_Error(-20000, 'Some_Proc: Invariants broken.'); end if;

 s := Fast_Cbrt(n1) + Fast_Cbrt(n2);
 if s is null or Abs(s - Expected_s)/Expected_s > Epsilon then
 Raise_Application_Error(-20000,
 'wrong s: '||To_Char(s, '999.999999999'));
 end if;
 Print('Some_Proc finished OK.');
 end Some_Proc;
PL/SQL conditional compilation page 83

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
-- Create_Test_Harness.sql
--
-- Simple test harness to show the use of the ordinary api and the testing api
create procedure Test_It is
begin
 begin
 Pkg.Run_The_Tests();
 exception when others then
 if DBMS_Utility.Format_Error_Stack() like
 '%~#^*+{obscure}|[]<>?%'
 then
 Print('Run_The_Tests() is disabled for production deployment.');
 else
 raise;
 end if;
 end;
 Pkg.Some_Proc();
end Test_It;
/

PL/SQL conditional compilation page 84

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
-- Exercise_Test_Harness.sql
--
-- Test sequence. Exercise with various values for the ccflags.
--
-- IEEE version: Production configuration.
-- Ultimately, the code for Alt=1 and all reference to $$Alt will be removed.
alter package Pkg compile body PLSQL_CCFlags = 'Alt:2' reuse settings
/
begin Test_It(); end;
/

--
-- Number version, Alt 1
-- Full testing, with assertions and tracing
alter package Pkg compile body PLSQL_CCFlags = '
 Use_Number:true, Testing:true,
 Alt:1, Asserting:true,
 Tracing:true,
 Trace_Step:65536'
 reuse settings
/
begin Test_It(); end;
/

PL/SQL conditional compilation page 85

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
-- Number version, Alt 1
-- Assertions but no tracing
alter package Pkg compile body PLSQL_CCFlags = '
 Use_Number:true, Testing:true,
 Alt:1, Asserting:true,
 Tracing:false,
 Trace_Step:null'
 reuse settings
/
begin Test_It(); end;
/

--
-- Number version, Alt 2
-- Assertions but no tracing
alter package Pkg compile body PLSQL_CCFlags = '
 Use_Number:true, Testing:true,
 Alt:2, Asserting:true,
 Tracing:false,
 Trace_Step:null'
 reuse settings
/
begin Test_It(); end;
/

--
-- Number version, Alt 1
-- For timing: no assertions or tracing
alter package Pkg compile body PLSQL_CCFlags = '
 Use_Number:true, Testing:true,
 Alt:1, Asserting:false,
 Tracing:false,
 Trace_Step:null'
 reuse settings
/
begin Test_It(); end;
/

--
-- Number version, Alt 2
-- For timing: no assertions or tracing
alter package Pkg compile body PLSQL_CCFlags = '
 Use_Number:true, Testing:true,
 Alt:2, Asserting:false,
 Tracing:false,
 Trace_Step:null'
 reuse settings
/
begin Test_It(); end;
/

PL/SQL conditional compilation page 86

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
-- IEEE version, Alt 1
-- Assertions but no tracing
alter package Pkg compile body PLSQL_CCFlags = '
 Use_Number:false, Testing:true,
 Alt:1, Asserting:true,
 Tracing:false,
 Trace_Step:null'
 reuse settings
/
begin Test_It(); end;
/

--
-- IEEE version, Alt 2
-- Assertions but no tracing
alter package Pkg compile body PLSQL_CCFlags = '
 Use_Number:false, Testing:true,
 Alt:2, Asserting:true,
 Tracing:false,
 Trace_Step:null'
 reuse settings
/
begin Test_It(); end;
/

--
-- IEEE version, Alt 1
-- For timing: no assertions or tracing
alter package Pkg compile body PLSQL_CCFlags = '
 Use_Number:false, Testing:true,
 Alt:1, Asserting:false,
 Tracing:false,
 Trace_Step:null'
 reuse settings
/
begin Test_It(); end;
/

--
-- IEEE version, Alt 2
-- For timing: no assertions or tracing
alter package Pkg compile body PLSQL_CCFlags = '
 Use_Number:false, Testing:true,
 Alt:2, Asserting:false,
 Tracing:false,
 Trace_Step:null'
 reuse settings
/
begin Test_It(); end;
/

PL/SQL conditional compilation page 87

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
Master_Script.txt
~~~~~~~~~~~~~~~~~

Run_The_Tests() is disabled for production deployment.
Some_Proc finished OK.

------------------------------------------------------------
Number version.
Crude estimate. Iterate to tolerance.
Assertions turned on.
Slow_Cbrt.....................6825 centiseconds
Fast_Cbrt.....................3203 centiseconds

         3277.750000           32.777500
                               22.868624
                               17.334923
                               15.192505
                               14.861983
                               14.854523

         6554.550000           65.545500
                               44.205553
                               30.588436
                               22.727399
                               19.381422
                               18.737296
                               18.714645

         9831.350000           98.313500
                               65.881385
                               44.675957
                               31.425862
                               24.268889
                               21.743323
                               21.427254
                               21.422545

        13108.150000          131.081500
                               87.641961
                               58.996822
                               40.586559
                               29.710208
                               24.756846
                               23.633579
                               23.578500

        16384.950000          163.849500
                              109.436439
                               73.413663
                               49.955817
                               35.492404
                               27.997241
                               25.632591
                               25.401032

        19661.750000          196.617500
                              131.247867
                               87.879045
                               59.434683
                               41.478451
                               31.461695
                               27.595663
                               27.003464
                               26.990286

        22938.550000          229.385500
                              153.068982
                              102.372328
                               68.977810
                               47.592244
                               35.103929
                               29.607497
                               28.460838
                               28.413400
PL/SQL conditional compilation page 88

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf


10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
        26215.350000          262.153500
                              174.896152
                              116.883111
                               78.561707
                               53.790306
                               38.880339
                               31.700845
                               29.829360
                               29.707032

        29492.150000          294.921500
                              196.727358
                              131.405585
                               88.173045
                               60.046514
                               42.757535
                               33.882269
                               31.151461
                               30.898081
Max_Fractional_Error:            0.00010

All helper tests for Pkg succeeded.
------------------------------------------------------------
Some_Proc finished OK.
PL/SQL conditional compilation page 89

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf


10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
------------------------------------------------------------
Number version.
Crude estimate. Iterate to tolerance.
Assertions turned on.
Slow_Cbrt.....................7007 centiseconds
Fast_Cbrt.....................3187 centiseconds
Max_Fractional_Error:            0.00010

All helper tests for Pkg succeeded.
------------------------------------------------------------
Some_Proc finished OK.

------------------------------------------------------------
Number version.
Good estimate. Just one iteration.
Assertions turned on.
Slow_Cbrt.....................6822 centiseconds
Fast_Cbrt..................... 533 centiseconds
Max_Fractional_Error:            0.02197

All helper tests for Pkg succeeded.
------------------------------------------------------------
Some_Proc finished OK.

------------------------------------------------------------
Number version.
Crude estimate. Iterate to tolerance.
Assertions turned off.
Slow_Cbrt.....................6493 centiseconds
Fast_Cbrt.....................2914 centiseconds
Max_Fractional_Error:            0.00010

All helper tests for Pkg succeeded.
------------------------------------------------------------
Some_Proc finished OK.

------------------------------------------------------------
Number version.
Good estimate. Just one iteration.
Assertions turned off.
Slow_Cbrt.....................6518 centiseconds
Fast_Cbrt..................... 320 centiseconds
Max_Fractional_Error:            0.02197

All helper tests for Pkg succeeded.
------------------------------------------------------------
Some_Proc finished OK.
PL/SQL conditional compilation page 90

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf


10-November-2005 www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf
------------------------------------------------------------
IEEE version.
Crude estimate. Iterate to tolerance.
Assertions turned on.
Slow_Cbrt..................... 190 centiseconds
Fast_Cbrt..................... 166 centiseconds
Max_Fractional_Error:            0.00010

All helper tests for Pkg succeeded.
------------------------------------------------------------
Some_Proc finished OK.

------------------------------------------------------------
IEEE version.
Good estimate. Just one iteration.
Assertions turned on.
Slow_Cbrt..................... 189 centiseconds
Fast_Cbrt.....................  64 centiseconds
Max_Fractional_Error:            0.02197

All helper tests for Pkg succeeded.
------------------------------------------------------------
Some_Proc finished OK.

------------------------------------------------------------
IEEE version.
Crude estimate. Iterate to tolerance.
Assertions turned off.
Slow_Cbrt..................... 108 centiseconds
Fast_Cbrt..................... 128 centiseconds
Max_Fractional_Error:            0.00010

All helper tests for Pkg succeeded.
------------------------------------------------------------
Some_Proc finished OK.

------------------------------------------------------------
IEEE version.
Good estimate. Just one iteration.
Assertions turned off.
Slow_Cbrt..................... 107 centiseconds
Fast_Cbrt.....................  42 centiseconds
Max_Fractional_Error:            0.02197

All helper tests for Pkg succeeded.
------------------------------------------------------------
Some_Proc finished OK.
PL/SQL conditional compilation page 91

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf


PL/SQL conditional compilation
October 2005
Bryn Llewellyn, PL/SQL Product Manager, Oracle Headquarters

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2005, Oracle. All rights reserved.

This document is provided for information purposes only and the 
contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any 
other warranties or conditions, whether expressed orally or implied in 
law, including implied warranties and conditions of merchantability  or 
fitness for a particular purpose. We specifically disclaim any liability 
with respect to this document and no contractual obligations are 
formed either directly or indirectly by this document. This document 
may not be reproduced or transmitted in any form or by any means, 
electronic or mechanical, for any purpose, without our prior written 
permission.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks 
of Oracle Corporation and/or its affiliates. Other names may be 
trademarks of their respective owners.


	Abstract
	Introduction
	PL/SQL conditional compilation constructs
	The selection directive
	The inquiry directive
	The error directive
	Choosing between an inquiry directive and a static package constant
	The DBMS_DB_Version package

	How does PL/SQL conditional compilation work?
	The PL/SQL compilation pipeline
	Using the DBMS_Preprocessor package to see the conditional compilation output
	Choosing between the compile-time $if construct and the run-time if construct

	PL/SQL conditional compilation use cases
	Latent self-tracing code
	Latent assertions
	Unit testing of subprograms declared only in a package body
	Mock objects
	Comparing competing implementations during prototyping
	Component based installation
	Spanning different releases of Oracle Database with a single source code corpus

	Case study: implementing unit testing, assertions, and tracing for a fast cube root body-private helper function
	Introduction to the case study
	The design of the Fast_Cbrt() algorithm
	The requirements for the unit tests
	Discussion of the PL/SQL implementation
	The test results
	Conclusion to the Fast_Cbrt() case study

	How does PL/SQL conditional compilation compare with similar features in other programming environments?
	The availability of PL/SQL conditional compilation in Oracle Database 10g Release 1 and in Oracle9i Database Release 2
	The Catch 22
	The decision to make PL/SQL conditional compilation available in 10.1 and in 9.2
	The PL/SQL conditional compilation underscore parameter
	Functionality restrictions in 10.1 and 9.2
	The purpose of the Ver_LE_ constants in the DBMS_DB_Version package

	Concluding remarks
	Appendix A: Change History
	20-September-2005
	26-September-2005
	14-October-2005
	18-October-2005
	10-November-2005

	Appendix B: Oracle Database Documentation Library references
	Appendix C: The source code of the DBMS_DB_Version package in 10.2, 10.1, and 9.2
	Appendix D: Self-contained SQL*Plus script from which Code_44 is an extract
	Appendix E: Tracking information from the Bug Database
	Appendix F: The Newton-Raphson formula for improving an approximation for the cube root of a number
	Appendix G: SQL*Plus scripts for the case study


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


